Rough - granular computing in knowledge discovery and data mining
著者
書誌事項
Rough - granular computing in knowledge discovery and data mining
(Studies in computational intelligence, 152)
Springer, c2008
大学図書館所蔵 全3件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
内容説明・目次
内容説明
If controversies were to arise, there would be no more need of disputation between two philosophers than between two accountants. For it would su?ce to take their pencils in their hands, and say to each other: 'Let us calculate'. Gottfried Wilhelm Leibniz (1646-1716) Dissertio de Arte Combinatoria (Leipzig, 1666) GottfriedWilhelm Leibniz, oneofthe greatestmathematicians,discussedcalculi ofthoughts. Onlymuchlater,did it becomeevidentthat newtools arenecessary for developing such calculi, e. g. , due to the necessity of reasoning under unc- tainty about objects and (vague) concepts. Fuzzy set theory (Lot? A. Zadeh, 1965) and rough set theory (Zdzisla w Pawlak, 1982) represent two di?erent - proaches to vagueness. Fuzzy set theory addresses gradualness of knowledge, expressed by the fuzzy membership, whereas rough set theory addresses gra- larity of knowledge, expressed by the indiscernibility relation. Granular comp- ing (Zadeh,1973,1998)iscurrentlyregardedasa uni?edframeworkfor theories, methodologies and techniques for modeling calculi of thoughts, based on objects called granules.
The book "Rough-Granular Computing in Knowledge Discovery and Data Mining" written by ProfessorJaroslawStepaniuk is dedicated to methods based on a combination of the following three closely related and rapidly growing - eas: granular computing, rough sets, and knowledge discovery and data mining (KDD). In the book, the KDD foundations based on the rough set approach and granular computing are discussed together with illustrative applications. In searching for relevant patterns or in inducing (constructing) classi?ers in KDD, di?erent kinds of granulesaremodeled. In this modeling process, granulescalled approximation spaces play a special rule.
目次
I: Rough Set Methodology.- Rough Sets.- Data Reduction.- II: Classification and Clustering.- Selected Classification Methods.- Selected Clustering Methods.- A Medical Case Study.- III: Complex Data and Complex Concepts.- Mining Knowledge from Complex Data.- Complex Concept Approximations.- IV: Conclusions, Bibliography and Further Readings.- Concluding Remarks.
「Nielsen BookData」 より