Metaheuristics for scheduling in industrial and manufacturing applications
著者
書誌事項
Metaheuristics for scheduling in industrial and manufacturing applications
(Studies in computational intelligence, v. 128)
Springer, c2008
大学図書館所蔵 全4件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
内容説明・目次
内容説明
During the past decades scheduling has been among the most studied op- mization problemsanditisstillanactiveareaofresearch!Schedulingappears in many areas of science, engineering and industry and takes di?erent forms depending on the restrictions and optimization criteria of the operating en- ronments [8]. For instance, in optimization and computer science, scheduling has been de?ned as "the allocation of tasks to resources over time in order to achieve optimality in one or more objective criteria in an e?cient way" and in production as "production schedule, i. e. , the planning of the production or the sequence of operations according to which jobs pass through machines and is optimal with respect to certain optimization criteria. " Although there is a standardized form of stating any scheduling problem, namely "e?cient allocation ofn jobs onm machines -which can process no more than one activity at a time- with the objective to optimize some - jective function of the job completion times", scheduling is in fact a family of problems. Indeed, several parameters intervene in the problem de?nition: (a) job characteristics (preemptive or not, precedence constraints, release dates, etc. ); (b) resource environment (single vs. parallel machines, un- lated machines, identical or uniform machines, etc. ); (c) optimization criteria (minimize total tardiness, the number of late jobs, makespan, ?owtime, etc. ; maximize resource utilization, etc. ); and, (d) scheduling environment (static vs. dynamic,intheformerthenumberofjobstobeconsideredandtheirready times are available while in the later the number of jobs and their charact- istics change over time).
目次
Exact, Heuristic and Meta-heuristic Algorithms for Solving Shop Scheduling Problems.- Scatter Search Algorithms for Identical Parallel Machine Scheduling Problems.- On the Effectiveness of Particle Swarm Optimization and Variable Neighborhood Descent for the Continuous Flow-Shop Scheduling Problem.- A Dynamical Ant Colony Optimization with Heuristics for Scheduling Jobs on a Single Machine with a Common Due Date.- Deterministic Search Algorithm for Sequencing and Scheduling.- Sequential and Parallel Variable Neighborhood Search Algorithms for Job Shop Scheduling.- Solving Scheduling Problems by Evolutionary Algorithms for Graph Coloring Problem.- Heuristics and meta-heuristics for lot sizing and scheduling in the soft drinks industry: a comparison study.- Hybrid Heuristic Approaches for Scheduling in Reconfigurable Manufacturing Systems.- A Genetic Algorithm for Railway Scheduling Problems.- Modelling Process and Supply Chain Scheduling Using Hybrid Meta-heuristics.- Combining Simulation and Tabu Search for Oil-derivatives Pipeline Scheduling.- Particle Swarm Scheduling for Work-Flow Applications in Distributed Computing Environments.
「Nielsen BookData」 より