Singular-perturbation theory : an introduction with applications
著者
書誌事項
Singular-perturbation theory : an introduction with applications
Cambridge University Press, 2009
大学図書館所蔵 全6件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 479-493
Includes indexes
"First published 1985, this digitally printed version 2009."
内容説明・目次
内容説明
This book presents an introduction to singular-perturbation problems, problems which depend on a parameter in such a way that solutions behave non-uniformly as the parameter tends toward some limiting value of interest. The author considers and solves a variety of problems, mostly for ordinary differential equations. He constructs (approximate) solutions for oscillation problems, using the methods of averaging and of multiple scales. For problems of the nonoscillatory type, where solutions exhibit 'fast dynamics' in a thin initial layer, he derives solutions using the O'Malley/Hoppensteadt method and the method of matched expansions. He obtains solutions for boundary-value problems, where solutions exhibit rapid variation in thin layers, using a multivariable method. After a suitable approximate solution is constructed, the author linearizes the problem about the proposed approximate solution, and, emphasizing the use of the Banach/Picard fixed-point theorem, presents a study of the linearization. This book will be useful to students at the graduate and senior undergraduate levels studying perturbation theory for differential equations, and to pure and applied mathematicians, engineers, and scientists who use differential equations in the modelling of natural phenomena.
目次
- Preface
- Acknowledgments
- Preliminary results
- Part I. Initial-Value Problems of Oscillatory Type: 1. Precession of the planet Mercury
- 2. Krylov/Bogoliubov averaging
- 3. The multiscale technique
- 4. Error estimates for perturbed-oscillation problems
- Part II. Initial-Value Problems of Overdamped Type: 5. Linear overdamped initial-value problems
- 6. Nonlinear overdamped initial-value problems
- 7. Conditionally stable problems
- Part III. Boundary-Value Problems: 8. Linear scalar problems
- 9. Linear first-order systems
- 10. Nonlinear problems
- References
- Name index
- Subject index.
「Nielsen BookData」 より