Management science : the art of modeling with spreadsheets
著者
書誌事項
Management science : the art of modeling with spreadsheets
John Wiley & Sons, c2007
2nd ed
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Rev. ed. of: The art of modeling with spreadsheets : management science, spreadsheet engineering, and modeling craft / Stephen G. Powell, Kenneth R. Baker. 2004
Includes index
内容説明・目次
内容説明
The second edition of Management Science: The Art of Modeling with Spreadsheets by Steve Powell and Ken Baker will expand upon the essential skills needed to develop real expertise in business modeling. By adding more coverage of management science topics, broader coverage of Excel, focused chapters, and new exercises and cases, this edition will be easier to use in a wide variety of undergraduate and MBA courses.
目次
CHAPTER 1 INTRODUCTION. 1.1 Models and Modeling. 1.2 The Role of Spreadsheets. 1.3 The Real World and the Model World. 1.4 Lessons from Expert and Novice Modelers. 1.5 Organization of the Book. 1.6 Summary. CHAPTER 2 MODELING IN A PROBLEM-SOLVING FRAMEWORK. 2.1 Introduction. 2.2 The Problem-Solving Process. 2.3 Influence Charts. 2.4 Craft Skills for Modeling. 2.5 Summary. CHAPTER 3 BASIC EXCEL SKILLS. 3.1 Introduction. 3.2 Excel Prerequisites. 3.3 The Excel Window. 3.4 Configuring Excel. 3.5 Manipulating Windows and Sheets. 3.6 Navigation. 3.7 Selecting Cells. 3.8 Entering Text and Data. 3.9 Editing Cells. 3.10 Formatting. 3.11 Basic Formulas. 3.12 Basic Functions. 3.13 Charting. 3.14 Printing. 3.15 Help Options. 3.16 Summary. CHAPTER 4 ADVANCED EXCEL SKILLS. 4.1 Introduction. 4.2 Keyboard Shortcuts. 4.3 Controls. 4.4 Cell Comments. 4.5 Naming Cells and Ranges. 4.6 Advanced Formulas and Functions. 4.7 Recording Macros And Using VBA. 4.8 Summary. CHAPTER 5 SPREADSHEET ENGINEERING. 5.1 Introduction. 5.2 Designing a Spreadsheet. 5.3 Designing a Workbook. 5.4 Building a Workbook. 5.5 Testing a Workbook. 5.6 Auditing Software: Spreadsheet Professional. 5.7 Summary. CHAPTER 6 ANALYSIS USING SPREADSHEETS. 6.1 Introduction. 6.2 Base-case Analysis. 6.3 What-If Analysis. 6.4 Breakeven Analysis. 6.5 Optimization Analysis. 6.6 Simulation and Risk Analysis. 6.7 Summary. CHAPTER 7 DATA ANALYSIS FOR MODELING. 7.1 Introduction. 7.2 Finding Facts from Databases. 7.3 Analyzing Sample Data. 7.4 Estimating Parameters: Point Estimates. 7.5 Estimating Parameters: Interval Estimates. 7.6 Summary. CHAPTER 8 REGRESSION ANALYSIS. 8.1 Introduction. 8.2 A Decision-Making Example. 8.3 Exploring Data: Scatter Plots and Correlation. 8.4 Simple Linear Regression. 8.5 Goodness-of-Fit. 8.6 Simple Regression in the BPI Example. 8.7 Simple Nonlinear Regression. 8.8 Multiple Linear Regression. 8.9 Multiple Regression in the BPI Example. 8.10 Regression Assumptions. 8.11Using the Excel Tools Trendline and LINEST. 8.12 Summary. CHAPTER 9 SHORT-TERM FORECASTING. 9.1 Introduction. 9.2 Forecasting with Time Series Models. 9.2.1 The Moving Average Model. 9.2.2 Measures of Forecast Accuracy. 9.3 The Exponential Smoothing Model. 9.4 Exponential Smoothing with a Trend. 9.5 Exponential Smoothing with Trend and Cyclical Factors. 9.6 Using CB Predictor. 9.6.1 Single Moving Average. 9.6.2 Single Exponential Smoothing. 9.7 Summary. CHAPTER 10 NONLINEAR OPTIMIZATION. 10.1 Introduction. 10.2 An Optimization Example. 10.3 Building Models for Solver. 10.4 Model Classification and the Nonlinear Solver. 10.5 Nonlinear Programming Examples. 10.5.1 Facility Location. 10.6 Sensitivity Analysis for Nonlinear Programs. 10.7 The Portfolio Optimization Model. 10.8 Summary. CHAPTER 11 LINEAR PROGRAMMING. 11.1 Introduction. 11.2 Allocation Models. 11.3 Covering Models. 11.4 Blending Models. 11.5 Sensitivity Analysis for Linear Programs. 11.6 Patterns in Linear Programming Solutions. 11.7 Data Envelopment Analysis. 11.8 Summary. Appendix 11.1. CHAPTER 12 NETWORK MODELS. 12.1 Introduction. 12.2 The Transportation Model. 12.3 Assignment Model. 12.4 The Transshipment Model. 12.5 A Standard Form for Network Models. 12.6 Network Models with Yields. 12.7 Network Models for Process Technologies. 12.8 Summary. CHAPTER 13 INTEGER PROGRAMMING. 13.1 Introduction. 13.2 Integer Variables and the Integer Solver. 13.3 Binary Variables and Binary Choice Models. 13.4 Binary Variables and Logical Relationships. 13.5 The Facility Location Model. 13.6 Summary. CHAPTER 14 DECISION ANALYSIS. 14.1 Introduction. 14.2 Payoff Tables and Decision Criteria. 14.3 Using Trees to Model Decisions. 14.4 Using TreePlan Software. 14.5 Maximizing Expected Utility with TreePlan. 14.6 Summary. CHAPTER 15 MONTE CARLO SIMULATION. 15.1 Introduction. 15.2 A Simple Illustration. 15.3 The Simulation Process. 15.4 Corporate Valuation Using Simulation. 15.5 Option Pricing Using Simulation. 15.6 Selecting Uncertain Parameters. 15.7 Selecting Probability Distributions. 15.8 Ensuring Precision in Outputs. 15.9 Interpreting Simulation Outcomes. 15.9.1 Forecast Charts. 15.9.2 Statistics and Percentiles. 15.10 When Not to Simulate. 15.11 Summary. Appendix 15.1 Choosing Crystal Ball Settings. Appendix 15.2 Additional features of Crystal Ball. CHAPTER 16 OPTIMIZATION IN SIMULATION. 16.1 Introduction. 16.2 Optimization with One or Two Decision Variables. 16.3 Complex Optimization Problems. 16.4 Embedded Optimization: Using Solver within Crystal Ball. 16.5 Summary. MODELING CASES. APPENDIX BASIC PROBABILITY CONCEPTS. INDEX.
「Nielsen BookData」 より