Analysis and design of autonomous microwave circuits
著者
書誌事項
Analysis and design of autonomous microwave circuits
(Wiley series in microwave and optical engineering / Kai Chang, editor)
Wiley, c2008
- cloth
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Presents simulation techniques that substantially increase designers' control over the oscillationin autonomous circuits This book facilitates a sound understanding of the free-running oscillation mechanism, the start-up from the noise level, and the establishment of the steady-state oscillation. It deals with the operation principles and main characteristics of free-running and injection-locked oscillators, coupled oscillators, and parametric frequency dividers.
Analysis and Design of Autonomous Microwave Circuits provides:
An exploration of the main nonlinear-analysis methods, with emphasis on harmonic balance and envelope transient methods
Techniques for the efficient simulation of the most common autonomous regimes
A presentation and comparison of the main stability-analysis methods in the frequency domain
A detailed examination of the instabilization mechanisms that delimit the operation bands of autonomous circuits
Coverage of techniques used to eliminate common types of undesired behavior, such as spurious oscillations, hysteresis, and chaos
A thorough presentation of the oscillator phase noise
A comparison of the main methodologies of phase-noise analysis
Techniques for autonomous circuit optimization, based on harmonic balance
A consideration of different design objectives: presetting the oscillation frequency and output power, increasing efficiency, modifying the transient duration, and imposing operation bands
Analysis and Design of Autonomous Microwave Circuits is a valuable resource for microwave designers, oscillator designers, and graduate students in RF microwave design.
目次
Preface. 1. Oscillator Dynamics.
1.1. Introduction.
1.2. Operational Principle of Free-Running Oscillators.
1.3. Impedance-Admittance Analysis of an Oscillator.
1.4. Frequency-Domain Formulation of an Oscillator Circuit.
1.5. Oscillator Dynamics.
1.6. Phase Noise.
2. Phase Noise.
2.1. Introduction.
2.2. Random Variable and random Processes.
2.3. Noise Sources in Electronic Circuits.
2.4. Derivation of the Oscillator Noise Spectrum Using Time-Domain Analysis.
2.5. Frequency-Domain Analysis of a Noisy Oscillator.
3. Bifurcation Analysis.
3.1. Introduction.
3.2. Representation of Solutions.
3.3. Bifurcations.
4. Injected Oscillators and Frequency Dividers.
4.1. Introduction.
4.2. Injection-Locked Oscillators.
4.3. Frequency Dividers.
4.4. Subharmonically and Ultrasubharmonically Injection-Locked Oscillators.
4.5. Self-Oscillating Mixers.
5. Nonlinear Circuit Simulation.
5.1. Introduction.
5.2. Time-Domain Integration.
5.3. Fast Time-Domain Techniques.
5.4. Harmonic Balance.
5.5. Harmonic Balance Analysis of Autonomous and Synchronized Circuit.
5.6. Envelope Transient.
5.7. Conversion Matrix Approach.
6. Stability Analysis Using Harmonic Balance.
6.1. Introduction.
6.2. Local Stability Analysis.
6.3. Stability Analysis of Free-Running Oscillators.
6.4. Solution Curves Versus a Circuit Parameter.
6.5.Global Stability Analysis.
6.6. Bifurcation Synthesis and Control.
7. Noise Analysis Using Harmonic Balance.
7.1. Introduction.
7.2. Noise in Semiconductor Devices.
7.3. Decoupled Analysis of Phase and Amplitude Perturbations in a Harmonic Balance System.
7.4. Coupled Phase and Amplitude Noise Calculation.
7.5. Carrier Modulation Approach.
7.6. Conversion Matrix Approach.
7.7. Noise in Synchronized Oscillators.
8. Harmonic Balance Techniques for Oscillator Design.
8.1. Introduction.
8.2. Oscillator Synthesis.
8.3. Design of Voltage-Controlled Oscillators.
8.4. Maximization of Oscillator Efficiency.
8.5. Control of Oscillator Transients.
8.6. Phase Noise Reduction.
9. Stabilization Techniques for Phase Noise Reduction.
9.1. Introduction.
9.2. Self-Injection Topology.
9.3. Use of High-Q Resonators.
9.4. Stabilization Loop.
9.5. Transistor-Based Oscillators.
10. Coupled-Oscillator Systems.
10.1. Introduction.
10.2. Oscillator Systems with Global Coupling.
10.3. Coupled-Oscillator Systems for Beam Steering.
11. Simulation Techniques for Frequency-Divider Design.
11.1. Introduction.
11.2. Types of frequency dividers.
11.3. Design of Transistor-Based Regenerative Frequency Dividers.
11.4. Design of Harmonic Injection Dividers.
11.5. Extension of the Techniques to Subharmonic Injection Oscillators.
12. Circuit Stabilization.
12.1. Introduction.
12.2. Unstable Class AB Amplifier Using Power Combiners.
12.3. Unstable Class E/F Amplifier.
12.4. Unstable Class E Amplifier.
12.5. Stabilization of Oscillator Circuits.
12.6. Stabilization of Multifunction MMIC Chips.
Index.
「Nielsen BookData」 より