Commutative algebra
著者
書誌事項
Commutative algebra
(Cambridge studies in advanced mathematics, 47 . An algebraic introduction to complex projective geometry ; 1)
Cambridge University Press, 2009
Digitally printed ver
- : pbk
大学図書館所蔵 全6件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
First published 1996
Includes bibliography (p. 223), and subject and symbols indexes
内容説明・目次
内容説明
In this introduction to commutative algebra, the author leads the beginning student through the essential ideas, without getting embroiled in technicalities. The route chosen takes the reader quickly to the fundamental concepts for understanding complex projective geometry, the only prerequisites being a basic knowledge of linear and multilinear algebra and some elementary group theory. In the first part, the general theory of Noetherian rings and modules is developed. A certain amount of homological algebra is included, and rings and modules of fractions are emphasised, as preparation for working with sheaves. In the second part, the central objects are polynomial rings in several variables with coefficients in the field of complex numbers. After Noether's normalisation lemma and Hilbert's Nullstellensatz, affine complex schemes and their morphisms are introduced; Zariski's main theorem and Chevalley's semi-continuity theorem are then proved. Finally, a detailed study of Weil and Cartier divisors provides a solid background for modern intersection theory. This is an excellent textbook for those who seek an efficient and rapid introduction to the geometric applications of commutative algebra.
目次
- 1. Rings, homomorphisms, ideals
- 2. Modules
- 3. Noetherian rings and modules
- 4. Artinian rings and modules
- 5. Finitely generated modules over Noetherian rings
- 6. A first contact with homological algebra
- 7. Fractions
- 8. Integral extensions of rings
- 9. Algebraic extensions of rings
- 10. Noether's normalisation lemma
- 11. Affine schemes
- 12. Morphisms of affine schemes
- 13. Zariski's main theorem
- 14. Integrally closed Noetherian rings
- 15. Weil divisors
- 16. Cartier divisors
- Subject index
- Symbols index.
「Nielsen BookData」 より