Intelligent wearable interfaces
著者
書誌事項
Intelligent wearable interfaces
John Wiley, c2008
大学図書館所蔵 全5件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes index
内容説明・目次
内容説明
A thorough introduction to the development and applications of intelligent wearable interfaces As mobile computing, sensing technology, and artificial intelligence become more advanced and their applications more widespread, the area of intelligent wearable interfaces is growing in importance. This emerging form of human-machine interaction has infinite possibilities for enhancing humans' capabilities in communications, actions, monitoring, and control.
Intelligent Wearable Interfaces is a collection of the efforts the authors have made in this area at The Chinese University of Hong Kong. They introduce methodologies to develop a variety of intelligent wearable interfaces and cover practical implementations of systems for real-life applications. A number of novel intelligent wearable interface systems are examined, including:
Network architecture for wearable robots
Wearable interface for automatic language translation
Intelligent cap interface for wheelchair control
Intelligent shoes for human-computer interface
Fingertip human-computer interface
Ubiquitous 3D digital writing instrument
Intelligent mobile human airbag system
This book is a valuable reference for researchers, designers, engineers, and upper-level undergraduate and graduate students in the fields of human-machine interactions,rehabilitation engineering, robotics, and artificial intelligence.
目次
List of Figures. List of Tables.
Preface.
1. Introduction.
2. Network Architecture for Wearable Robots.
2.1 Introduction.
2.2 Wearable Robots and Interactions.
2.3 Wearable Robot Design.
2.4 Distributed Service-based Architecture.
2.4.1 Extension to the Jini Model.
2.4.2 The Matching Service.
2.5 Application Scenario.
2.6 Related Works.
2.7 Conclusion.
3. Wearable Interface for Automatic Language Translation.
3.1 Introduction.
3.2 System Architecture.
3.3 Text Detection Algorithm.
3.3.1 Demands of Text Detection Algorithm.
3.3.2 Intrinsic Characteristic of a Character.
3.3.3 CIC-based Text Detection Algorithm.
3.3.4 Combine Line Segments into a Character.
3.4 Image Cutting, Rotation & Binarization.
3.4.1 Image Cutting and Rotation.
3.4.2 Image Binarization.
3.5 Real-Time Translation.
3.6 Conclusion.
4. Intelligent Cap Interface for Wheelchair Control.
4.1 Introduction.
4.2 Electromyography and Electrooculopraghy.
4.3 Approach.
4.4 Interface.
4.4.1 Hardware.
4.4.2 Implementation.
4.5 Experimental Study.
4.5.1 Doorways (A-B).
4.5.2 U-turning (B-C-B).
4.5.3 General Path (C-D).
4.6 Conclusion.
5. Intelligent Shoes for Human-Computer Interface.
5.1 Introduction.
5.2 Hardware Design.
5.2.1 Sensing the Parameters inside the Shoe.
5.2.2 Gathering Information from the Sensors.
5.2.3 Wireless Communication.
5.2.4 Data Visualization.
5.3 Three Applications of the Intelligent Shoes.
5.3.1 Intelligent Shoes for Human-Computer Interface: Shoe-Mouse.
5.3.2 Intelligent Shoes for Pressure Measurement.
5.3.3 Intelligent Shoes for Human Identification.
5.4 Conclusion.
6. Finger-Tip Human-Computer Interface.
6.1 Introduction.
6.2 Hardware Design.
6.2.1 MEMS Accelerator for Motion Detection.
6.2.2 Signal Processing and Analysis.
6.2.3 RF Wireless System.
6.2.4 System Evaluation.
6.3 Specific Applications.
6.3.1 Human-Robotic-Hand Interaction Using MIDS.
6.3.2 Computer Mouse on a Finger Tip (MIDS-VM).
6.3.3 Computer Game Interaction Using MIDS.
6.3.4 MIDS for PDA Interaction (Embedded-MIDS: E-MIDS).
6.4 Conclusion.
7. Ubiquitous 3D Digital Writing Instrument.
7.1 Introduction.
7.2 Hardware Design.
7.3 Signal Processing and Analysis.
7.3.1 Kalman Filtering for MEMS Sensors.
7.4 Time Update Model.
7.4.1 Attitude Strapdown Theory for a Quaternion.
7.4.2 Error Model for Time Update.
7.5 Measurement Update Model.
7.6 Testing.
7.6.1 Simulation Test.
7.6.2 Experiment Test.
7.7 Writing Application based on Attitude EKF Compensation.
7.8 Experimental Results of Integrated System.
7.9 Conclusion.
8. Intelligent Mobile Human Airbag System.
8.1 Introduction.
8.2 Hardware Design.
8.2.1 IMU System Design.
8.2.2 Mechanical Release Mechanism.
8.2.3 Minimization of Airbag Inflation Time.
8.2.4 The Punch Test for the Second Mechanism.
8.2.5 System Integration.
8.3 Support Vector Machine for Human Motion Determination.
8.3.1 Principal Component Analysis for Feature Generation.
8.3.2 Support Vector Machine Classifier.
8.4 Experimental Results.
8.4.1 Motion Detection Experiments and Database Forming.
8.4.2 SVM Training and Falling-Down Recognition.
8.5 Conclusion.
Topic Index.
「Nielsen BookData」 より