Miniquaternion geometry : an introduction to the study of projective planes
著者
書誌事項
Miniquaternion geometry : an introduction to the study of projective planes
(Cambridge tracts in mathematics and mathematical physics, no. 60)
Cambridge University Press, 2008, c1971
- : pbk
大学図書館所蔵 全3件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Digitally printed version"--T.p. verso
Includes bibliographical references (p. 171-173) and index
内容説明・目次
内容説明
This tract provides an introduction to four finite geometrical systems and to the theory of projective planes. Of the four geometries, one is based on a nine-element field and the other three can be constructed from the nine-element 'miniquaternion algebra', a simple system which has many though not all the properties of a field. The three systems based on the miniquaternion algebra have widely differing properties; none of them has the homogeneity of structure which characterizes geometry over a field. While these four geometries are the main subject of this book, many of the ideas developed are of much more general significance. The authors have assumed a knowledge of the simpler properties of groups, fields, matrices and transformations (mappings), such as is contained in a first course in abstract algebra. Development of the nine-element field and the miniquaternion system from a prescribed set of properties of the operations of addition and multiplication are covered in an introductory chapter. Exercises of varying difficulty are integrated with the text.
目次
- Part I. Algebraic Background: 1. Two algebraic systems with nine elements
- Part II. Field-Planes: 2. Projective planes
- 3. Galois planes of orders 3 and 9
- Part III. Miniquaternion Planes: 4. The planes and D
- 5. The plane .
「Nielsen BookData」 より