Mining complex data
Author(s)
Bibliographic Information
Mining complex data
(Studies in computational intelligence, v. 165)
Springer, c2009
- : pbk
Available at 4 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"The papers presented here are selected from the workshop papers held yearly since 2006"--Cover
Includes bibliographical references and index
Description and Table of Contents
Description
The aim of this book is to gather the most recent works that address issues related to the concept of mining complex data. The whole knowledge discovery process being involved, our goal is to provide researchers dealing with each step of this process by key entries. Actually, managing complex data within the KDD process implies to work on every step, starting from the pre-processing (e.g. structuring and organizing) to the visualization and interpretation (e.g. sorting or filtering) of the results, via the data mining methods themselves (e.g. classification, clustering, frequent patterns extraction, etc.). The papers presented here are selected from the workshop papers held yearly since 2006.
Table of Contents
General Aspects of Complex Data.- Using Layout Data for the Analysis of Scientific Literature.- Extracting a Fuzzy System by Using Genetic Algorithms for Imbalanced Datasets Classification: Application on Down's Syndrome Detection.- A Hybrid Approach of Boosting Against Noisy Data.- Dealing with Missing Values in a Probabilistic Decision Tree during Classification.- Kernel-Based Algorithms and Visualization for Interval Data Mining.- Rules Extraction.- Evaluating Learning Algorithms Composed by a Constructive Meta-learning Scheme for a Rule Evaluation Support Method.- Mining Statistical Association Rules to Select the Most Relevant Medical Image Features.- From Sequence Mining to Multidimensional Sequence Mining.- Tree-Based Algorithms for Action Rules Discovery.- Graph Data Mining.- Indexing Structure for Graph-Structured Data.- Full Perfect Extension Pruning for Frequent Subgraph Mining.- Parallel Algorithm for Enumerating Maximal Cliques in Complex Network.- Community Finding of Scale-Free Network: Algorithm and Evaluation Criterion.- The k-Dense Method to Extract Communities from Complex Networks.- Data Clustering.- Efficient Clustering for Orders.- Exploring Validity Indices for Clustering Textual Data.
by "Nielsen BookData"