Computer vision : a modern approach
著者
書誌事項
Computer vision : a modern approach
(An Alan R. Apt book)(Prentice Hall series in artificial intelligence)
Prentice Hall, c2003
並立書誌 全1件
大学図書館所蔵 全10件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 643-671) and index
内容説明・目次
内容説明
Appropriate for upper-division undergraduate- and graduate-level courses in computer vision found in departments of Computer Science, Computer Engineering and Electrical Engineering.
This long anticipated book is the most complete treatment of modern computer vision methods by two of the leading authorities in the field. This accessible presentation gives both a general view of the entire computer vision enterprise and also offers sufficient detail for students to be able to build useful applications. Students will learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods.
目次
I. IMAGE FORMATION AND IMAGE MODELS.
1. Cameras.
2. Geometric Camera Models.
3. Geometric Camera Calibration.
4. Radiometry - Measuring Light.
5. Sources, Shadows and Shading.
6. Color.
II. EARLY VISION: JUST ONE IMAGE.
7. Linear Filters.
8. Edge Detection.
9. Texture.
III. EARLY VISION: MULTIPLE IMAGES.
10. The Geometry of Multiple Views.
11. Stereopsis.
12. Affine Structure from Motion.
13. Projective Structure from Motion.
IV. MID-LEVEL VISION.
14. Segmentation By Clustering.
15. Segmentation By Fitting a Model.
16. Segmentation and Fitting Using Probabilistic Methods.
17. Tracking with Linear Dynamic Models.
V. HIGH-LEVEL VISION: GEOMETRIC MODELS.
18. Model-Based Vision.
19. Smooth Surfaces and Their Outlines.
20. Aspect Graphs.
21. Range Data.
VI. HIGH-LEVEL VISION: PROBABILISTIC AND INFERENTIAL METHODS.
22. Finding Templates Using Classifiers.
23. Recognition By Relations Between Templates.
24. Geometric Templates From Spatial Relations.
VII. APPLICATIONS.
25. Application: Finding in Digital Libraries.
26. Application: Image-Based Rendering.
「Nielsen BookData」 より