Mathematical biology
Author(s)
Bibliographic Information
Mathematical biology
(IAS/Park City mathematics series / [Dan Freed, series editor], v. 14)
American Mathematical Society , Institute for Advanced Study, c2009
Available at 24 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
LEW||15||1200021325451
Note
Other editors: Mark A.J. Chaplain, James P. Keener, Philip K. Maini
Description and Table of Contents
Description
Each summer the IAS/Park City Mathematics Institute Graduate Summer School gathers some of the best researchers and educators in a particular field to present lectures on a major area of mathematics. A unifying theme of the mathematical biology courses presented here is that the study of biology involves dynamical systems. Introductory chapters by Jim Keener and Mark Lewis describe the biological dynamics of reactions and of spatial processes. Each remaining chapter stands alone, as a snapshot of in-depth research within a sub-area of mathematical biology. Jim Cushing writes about the role of nonlinear dynamical systems in understanding complex dynamics of insect populations. Epidemiology, and the interplay of data and differential equations, is the subject of David Earn's chapter on dynamic diseases. Topological methods for understanding dynamical systems are the focus of the chapter by Leon Glass on perturbed biological oscillators. Helen Byrne introduces the reader to cancer modeling and shows how mathematics can describe and predict complex movement patterns of tumors and cells. In the final chapter, Paul Bressloff couples nonlinear dynamics to nonlocal oscillations, to provide insight to the form and function of the brain. The book provides a state-of-the-art picture of some current research in mathematical biology. Our hope is that the excitement and richness of the topics covered here will encourage readers to explore further in mathematical biology, pursuing these topics and others on their own. The level is appropriate for graduate students and research scientists. Each chapter is based on a series of lectures given by a leading researcher and develops methods and theory of mathematical biology from first principles. Exercises are included for those who wish to delve further into the material.
by "Nielsen BookData"