Sequential methods and their applications
著者
書誌事項
Sequential methods and their applications
CRC Press, c2009
大学図書館所蔵 全5件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [455]-478) and index
内容説明・目次
内容説明
Interactively Run Simulations and Experiment with Real or Simulated Data to Make Sequential Analysis Come Alive
Taking an accessible, nonmathematical approach to this field, Sequential Methods and Their Applications illustrates the efficiency of sequential methodologies when dealing with contemporary statistical challenges in many areas.
The book first explores fixed sample size, sequential probability ratio, and nonparametric tests. It then presents numerous multistage estimation methods for fixed-width confidence interval as well as minimum and bounded risk problems. The book also describes multistage fixed-size confidence region methodologies, selection methodologies, and Bayesian estimation. Through diverse applications, each chapter provides valuable approaches for performing statistical experiments and facilitating real data analysis.
Functional in a variety of statistical problems, the authors' interactive computer programs show how the methodologies discussed can be implemented in data analysis. Each chapter offers examples of input, output, and their interpretations. Available online, the programs provide the option to save some parts of an output so readers can revisit computer-generated data for further examination with exploratory data analysis.
Through this book and its computer programs, readers will better understand the methods of sequential analysis and be able to use them in real-world settings.
目次
Preface. Objectives, Coverage, and Hopes. Why Sequential? Sequential Probability Ratio Test. Sequential Tests for Composite Hypotheses. Sequential Nonparametric Tests. Estimation of the Mean of a Normal Population. Location Estimation: Negative Exponential Distribution. Point Estimation of the Mean of an Exponential Population. Fixed-Width Intervals from MLEs. Distribution-Free Methods in Estimation. Multivariate Normal Mean Vector Estimation. Estimation in a Linear Model. Estimating the Difference of Two Normal Means. Selecting the Best Normal Population. Sequential Bayesian Estimation. Selected Applications. Appendix. References. Index.
「Nielsen BookData」 より