The discrete nonlinear Schrödinger equation : mathematical analysis, numerical computations and physical perspectives
著者
書誌事項
The discrete nonlinear Schrödinger equation : mathematical analysis, numerical computations and physical perspectives
(Springer tracts in modern physics : Ergebnisse der exakten Naturwissenschaften / editor, G. Höhler, v. 232)
Springer, c2009
- : hbk
大学図書館所蔵 全19件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
内容説明・目次
内容説明
Adventures of nonlinear science were perhaps most notably seeded at the Los Alamos National Laboratory (LANL) over half a century ago with the fundamental questionsofenergyequipartitioninnonlinearsystems, astheywereposedbyFermi, Pasta, and Ulam. At the time, probably little could be imagined of the far-reaching implications that the studies of nonlinear phenomena would have, continuing to expandtothisday.TheGinzburg-Landautheoryofsuperconductivityandtheord- parameter descriptions of super uidity, the "soliton revolution" through the works of Zabusky and Kruskal on the KdV equation and the subsequent widespread - plicationsof the nonlinear Schrodi .. ngerequation in optical bers and Bose-Einstein condensates,the developmentsof bifurcationtheory and chaotic dynamicsand their widespread applicationsfrom climate and geophysics,to biological phenomenaand chemical kineticsare only a few of the multiple arenas in which nonlineardynamics have emerged as the appropriate description of important physical systems.
I well remember my own early days of nonlinear science appreciation, rst at Cornell University in the early 1970s and then at Los Alamos where we began the Center for Nonlinear Studies (CNLS) in 1980. These were years marked by interdisciplinary discovery and by the recognition that many nonlinear equations have an inherent ability to exhibit both coherence and chaos - the beginnings of our appreciation today of spatio-temporal complexity and the functional role that this plays in multiple branches of science, technology, and engineering.
目次
- I Dimensions and Components.- General Introduction and Derivation of the DNLS Equation.- The One-Dimensional Case.- The Two-Dimensional Case.- The Three-Dimensional Case.- The Defocusing Case.- Extended Solutions and Modulational Instability.- MultiComponent DNLS Equations.- II Special Topics.- Experimental Results Related to DNLS Equations.- Numerical Methods for DNLS.- The Dynamics of Unstable Waves.- A Map Approach to Stationary Solutions of the DNLS Equation.- Formation of Localized Modes in DNLS.- Few-Lattice-Site Systems of Discrete Self-Trapping Equations.- Surface Waves and Boundary Effects in DNLS Equations.- Discrete Nonlinear Schr#x00F6
- dinger Equations with Time-Dependent Coefficients ( of Lattice Solitons).- Exceptional Discretizations of the NLS: Exact Solutions and Conservation Laws.- Solitary Wave Collisions.- Related Models.- DNLS with Impurities.- Statistical Mechanics of DNLS.- Traveling Solitary Waves in DNLS Equations.- Decay and Strichartz Estimates for DNLS.
「Nielsen BookData」 より