Applied geophysics in periglacial environments

書誌事項

Applied geophysics in periglacial environments

[edited by] C. Hauck and C. Kneisel

Cambridge University Press, 2008

  • : hbk

大学図書館所蔵 件 / 3

この図書・雑誌をさがす

注記

Includes bibliographical references and index

HTTP:URL=http://www.loc.gov/catdir/enhancements/fy0834/2008016679-b.html Information=Contributor biographical information

HTTP:URL=http://www.loc.gov/catdir/enhancements/fy0834/2008016679-d.html Information=Publisher description

HTTP:URL=http://www.loc.gov/catdir/enhancements/fy0834/2008016679-t.html Information=Table of contents only

内容説明・目次

内容説明

Many research problems in cryospheric science, such as global warming-induced permafrost degradation, require information about the subsurface, which can be imaged using geophysical methods. This book is a practical guide to the application of geophysical techniques in mountainous and polar terrain, where the harsh environment and nature of the subsurface pose particular challenges. It starts with an introduction to the main geophysical methods and then demonstrates their application in periglacial environments through various case studies - written by a team of international experts. The final part of the book presents a series of reference tables with typical values of geophysical parameters for periglacial environments. This handbook is a valuable resource for glaciologists, geomorphologists and geologists requiring an introduction to geophysical techniques, as well as for geophysicists lacking experience of planning and conducting field surveys in cold regions.

目次

  • Part I. Introduction
  • Part II. Introductory Chapters for the Main Geophysical Methods Applied: 1. Electric methods Christof Kneisel and Christian Hauck
  • 2. Electromagnetic methods Andreas Hoerdt and Christian Hauck
  • 3. Refraction seismics Lothar Schrott and Thomas Hoffmann
  • 4. Ground-penetrating radar Ivar Berthling and Kjetil Melvold
  • Part III. Case Studies: 5. Typology of vertical electrical soundings for permafrost/ground ice investigation in the forefields of small alpine glaciers Reynald Delaloye and Christophe Lambiel
  • 6. ERT imaging for frozen ground detection Mamoru Ishikawa
  • 7. Electrical resistivity values of frozen soil from VES and TEM field observations and laboratory experiments Koichiro Harada
  • 8. Results of geophysical surveys on Kasprowy Wierch, the Tatra Mountains Wojciech Dobinski, Bogdon Zogala, Krystian Wzietek and Leszek Litwin
  • 9. Reassessment of DC resistivity in rock glaciers by comparing with P-wave velocity: a case study in the Swiss Alps Atsushi Ikeda
  • 10. Quantifying the ice content in low-altitude scree slopes using geophysical methods Christian Hauck and Christof Kneisel
  • 11. The use of GPR in determining talus thickness and talus structure Oliver Sass
  • 12. GPR soundings of rock glaciers on Svalbard Ivar Berthling, Bernd Etzelmuller, Herman Farbrot, Ketil Isaksen, Morgan Wale and Rune Odegard
  • 13. Arctic glaciers and ground-penetrating radar case-study: Stagnation Glacier, Bylot Island, Canada Tristram D. L. Irvine-Fynn and Brian J. Moorman
  • 14. Mapping of subglacial topography using GPR for determining subglacial hydraulic conditions Kjetil Melvold and Thomas V. Schuler
  • 15. Snow measurements using GPR: example from Amundsenisen, Svalbard Kjetil Melvold
  • 16. Mapping Frazil ice conditions in rivers using ground penetrating radar Ivar Berthling, Halfdan Benjaminsen and Anund Kvambekk
  • Part IV. Tables of Typical Values of Geophysical Parameters for Periglacial Environments
  • Index.

「Nielsen BookData」 より

詳細情報

ページトップへ