Data mining and multi-agent integration
著者
書誌事項
Data mining and multi-agent integration
Springer, 2009
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
内容説明・目次
内容説明
Data Mining and Multi agent Integration aims to re?ect state of the art research and development of agent mining interaction and integration (for short, agent min ing). The book was motivated by increasing interest and work in the agents data min ing, and vice versa. The interaction and integration comes about from the intrinsic challenges faced by agent technology and data mining respectively; for instance, multi agent systems face the problem of enhancing agent learning capability, and avoiding the uncertainty of self organization and intelligence emergence. Data min ing, if integrated into agent systems, can greatly enhance the learning skills of agents, and assist agents with predication of future states, thus initiating follow up action or intervention. The data mining community is now struggling with mining distributed, interactive and heterogeneous data sources. Agents can be used to man age such data sources for data access, monitoring, integration, and pattern merging from the infrastructure, gateway, message passing and pattern delivery perspectives. These two examples illustrate the potential of agent mining in handling challenges in respective communities. There is an excellent opportunity to create innovative, dual agent mining interac tion and integration technology, tools and systems which will deliver results in one new technology.
目次
to Agents and Data Mining Interaction.- to Agent Mining Interaction and Integration.- Towards the Integration of Multiagent Applications and Data Mining.- Agent-Based Distributed Data Mining: A Survey.- Data Mining Driven Agents.- Exploiting Swarm Behaviour of Simple Agents for Clustering Web Users' Session Data.- Mining Temporal Patterns to Improve Agents Behavior: Two Case Studies.- A Multi-Agent System for Extracting and Analysing Users' Interaction in a Collaborative Knowledge Management System.- Towards Information Enrichment through Recommendation Sharing.- A Multiagent-based Intrusion Detection System with the Support of Multi-Class Supervised Classification.- Automatic Web Data Extraction Based on Genetic Algorithms and Regular Expressions.- Establishment and Maintenance of a Knowledge Network by Means of Agents and Implicit Data.- Equipping Intelligent Agents with Commonsense Knowledge acquired from Search Query Logs: Results from an Exploratory Story.- A Multi-Agent Learning Paradigm for Medical Data Mining Diagnostic Workbench.- Agent Driven Data Mining.- The EMADS Extendible Multi-Agent Data Mining Framework.- A Multiagent Approach to Adaptive Continuous Analysis of Streaming Data in Complex Uncertain Environments.- Multiagent Systems for Large Data Clustering.- A Multiagent, Multiobjective Clustering Algorithm.- Integration of Agents and Data Mining in Interactive Web Environment for Psychometric Diagnostics.- A Multi-Agent Framework for Anomalies Detection on Distributed Firewalls Using Data Mining Techniques.- Competitive-Cooperative Automated Reasoning from Distributed and Multiple Source of Data.- Normative Multi-Agent Enriched Data Mining to Support E-Citizens.- CV-Muzar - The Virtual Community Environment that Uses Multiagent Systems for Formation of Groups.- Agent based Video Contents Identification and Data Mining Using Watermark based Filtering.- Erratum.
「Nielsen BookData」 より