Handbook of computational econometrics
著者
書誌事項
Handbook of computational econometrics
Wiley, 2009
大学図書館所蔵 全24件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Handbook of Computational Econometrics examines the state of the art of computational econometrics and provides exemplary studies dealing with computational issues arising from a wide spectrum of econometric fields including such topics as bootstrapping, the evaluation of econometric software, and algorithms for control, optimization, and estimation. Each topic is fully introduced before proceeding to a more in-depth examination of the relevant methodologies and valuable illustrations. This book: * Provides self-contained treatments of issues in computational econometrics with illustrations and invaluable bibliographies. * Brings together contributions from leading researchers. * Develops the techniques needed to carry out computational econometrics. * Features network studies, non-parametric estimation, optimization techniques, Bayesian estimation and inference, testing methods, time-series analysis, linear and nonlinear methods, VAR analysis, bootstrapping developments, signal extraction, software history and evaluation.
This book will appeal to econometricians, financial statisticians, econometric researchers and students of econometrics at both graduate and advanced undergraduate levels.
目次
List of Contributors. Preface. 1 Econometric software ( Charles G. Renfro). 1.1 Introduction. 1.2 The nature of econometric software. 1.3 The existing characteristics of econometric software. 1.4 Conclusion. Acknowledgments. References. 2 The accuracy of econometric software ( Bruce D. McCullough ). 2.1 Introduction. 2.2 Inaccurate econometric results. 2.3 Entry-level tests. 2.4 Intermediate-level tests. 2.5 Conclusions. Acknowledgments. References. 3 Heuristic optimization methods in econometrics ( Manfred Gilli and Peter Winker ). 3.1 Traditional numerical versus heuristic optimization methods. 3.2 Heuristic optimization. 3.3 Stochastics of the solution. 3.4 General guidelines for the use of optimization heuristics. 3.5 Selected applications. 3.6 Conclusions. Acknowledgments. References. 4 Algorithms for minimax and expected value optimization ( Panos Parpas and Ber c Rustem). 4.1 Introduction. 4.2 An interior point algorithm. 4.3 Global optimization of polynomial minimax problems. 4.4 Expected value optimization. 4.5 Evaluation framework for minimax robust policies and expected value optimization. Acknowledgments. References. 5 Nonparametric estimation ( Rand R. Wilcox). 5.1 Introduction. 5.2 Density estimation. 5.3 Nonparametric regression. 5.4 Nonparametric inferential techniques. References. 6 Bootstrap hypothesis testing ( James G. MacKinnon). 6.1 Introduction. 6.2 Bootstrap and Monte Carlo tests. 6.3 Finite-sample properties of bootstrap tests. 6.4 Double bootstrap and fast double bootstrap tests. 6.5 Bootstrap data generating processes. 6.6 Multiple test statistics. 6.7 Finite-sample properties of bootstrap sup F tests. 6.8 Conclusion. Acknowledgments. References. 7 Simulation-based Bayesian econometric inference: principles and some recent computational advances ( Lennart F. Hoogerheide, Herman K. van Dijk and Rutger D. van Oest). 7.1 Introduction. 7.2 A primer on Bayesian inference. 7.3 A primer on simulation methods. 7.4 Some recently developed simulation methods. 7.5 Concluding remarks. Acknowledgments. References. 8 Econometric analysis with vector autoregressive models ( Helmut L u tkepohl). 8.1 Introduction. 8.2 VAR processes. 8.3 Estimation of VAR models. 8.4 Model specification. 8.5 Model checking. 8.6 Forecasting. 8.7 Causality analysis. 8.8 Structural VARs and impulse response analysis. 8.9 Conclusions and extensions. Acknowledgments. References. 9 Statistical signal extraction and filtering: a partial survey ( D. Stephen G. Pollock). 9.1 Introduction: the semantics of filtering. 9.2 Linear and circular convolutions. 9.3 Local polynomial regression. 9.4 The concepts of the frequency domain. 9.5 The classical Wiener-Kolmogorov theory. 9.6 Matrix formulations. 9.7 Wiener-Kolmogorov filtering of short stationary sequences. 9.8 Filtering nonstationary sequences. 9.9 Filtering in the frequency domain. 9.10 Structural time-series models. 9.11 The Kalman filter and the smoothing algorithm. References. 10 Concepts of and tools for nonlinear time-series modelling ( Alessandra Amendola and Christian Francq). 10.1 Introduction. 10.2 Nonlinear data generating processes and linear models. 10.3 Testing linearity. 10.4 Probabilistic tools. 10.5 Identification, estimation and model adequacy checking. 10.6 Forecasting with nonlinear models. 10.7 Algorithmic aspects. 10.8 Conclusion. Acknowledgments. References. 11 Network economics ( Anna Nagurney). 11.1 Introduction. 11.2 Variational inequalities. 11.3 Transportation networks: user optimization versus system optimization. 11.4 Spatial price equilibria. 11.5 General economic equilibrium. 11.6 Oligopolistic market equilibria. 11.7 Variational inequalities and projected dynamical systems. 11.8 Dynamic transportation networks. 11.9 Supernetworks: applications to telecommuting decision making and teleshopping decision making. 11.10 Supply chain networks and other applications. Acknowledgments. References. Index.
「Nielsen BookData」 より