Computational satistics [i.e. statistics]
Author(s)
Bibliographic Information
Computational satistics [i.e. statistics]
(Statistics and computing)
Springer, c2009
- : hbk
- Other Title
-
Computational statistics
Computational satistics
Available at 18 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. [689]-714) and index
Description and Table of Contents
Description
Computational inference is based on an approach to statistical methods that uses modern computational power to simulate distributional properties of estimators and test statistics. This book describes computationally intensive statistical methods in a unified presentation, emphasizing techniques, such as the PDF decomposition, that arise in a wide range of methods.
Table of Contents
Preliminaries.- Mathematical and Statistical Preliminaries.- Statistical Computing.- Computer Storage and Arithmetic.- Algorithms and Programming.- Approximation of Functions and Numerical Quadrature.- Numerical Linear Algebra.- Solution of Nonlinear Equations and Optimization.- Generation of Random Numbers.- Methods of Computational Statistics.- Graphical Methods in Computational Statistics.- Tools for Identification of Structure in Data.- Estimation of Functions.- Monte Carlo Methods for Statistical Inference.- Data Randomization, Partitioning, and Augmentation.- Bootstrap Methods.- Exploring Data Density and Relationships.- Estimation of Probability Density Functions Using Parametric Models.- Nonparametric Estimation of Probability Density Functions.- Statistical Learning and Data Mining.- Statistical Models of Dependencies.
by "Nielsen BookData"