Vibro-impact dynamics : modeling, mapping and applications
Author(s)
Bibliographic Information
Vibro-impact dynamics : modeling, mapping and applications
(Lecture notes in applied and computational mechanics, v. 43)
Springer, c2009
Available at 2 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
Description
Vibro-impact dynamics has occupied a wide spectrum of studies by dyn- icists, physicists, and mathematicians. These studies may be classi?ed into three main categories: modeling, mapping and applications. The main te- niques used in modeling of vibro-impact systems include phenomenological modelings, Hertzian models, and non-smooth coordinate transformations- velopedbyZhuravlevandIvanov. Oneofthemostcriticalsituationsimpeded invibro-impactsystemsisthegrazingbifurcation. Grazingbifurcationisu- ally studied through discontinuity mapping techniques, which are very useful to uncover the rich dynamics in the process of impact interaction. Note the availablemappings arevalidonly intheabsenceofnon-impactnonlinearities. Complex dynamic phenomena of vibro-impact systems include subharmonic oscillations, chaotic motion, and coexistence of di?erent attractors for the sameexcitationand systemparametersbut under di?erent initial conditions. Selectedapplicationsofvibro-impactdynamics. Theseincludelumpedand continuous systems.
Lumped systems cover a bouncing ball on an oscillating barrier, mass-spring-dashpot systems, normal and inverted pendulums, the spherical pendulum, the ship roll motion against icebergs, joints with fr- play, rotor-stator rubbing in rotating machinery, vocal folds, microactuators, strings, beams, pipes conveying ?uids with end-restraints, nuclear reactors and heat exchangers, and plates. These applications are discussed within the framework of the deterministic theory. Under random excitation the tre- ment requires special tools. The techniques of equivalent linearization and stochastic averaging have been applied to limited number of problems. One of the most bene?cial outcomesof vibro-impact dynamics is the development of impact dampers, which have witnessed signi?cant activities over the last four decades and have been used in several applications. On the other hand, vibro-impacthas detrimental e?ects on the operationsof mechanicalsystems and damage of pipes and rods in nuclear reactors.
Table of Contents
Modeling and Analytical Approaches.- Mapping of Grazing and C-Bifurcations.- Single-Degree-of-Freedom Systems.- Two- and Multi-Degree-of-Freedom Systems.- Non-Classical Lumped Systems.- Continuous Systems.- Stochastic Vibro-Impact Dynamics.- Impact Dampers.
by "Nielsen BookData"