Fundamentals of ceramics

書誌事項

Fundamentals of ceramics

Michel W. Barsoum

(Series in materials science and engineering / B. Cantor, M. J. Goringe)

Taylor & Francis, 2003

並立書誌 全1

大学図書館所蔵 件 / 5

この図書・雑誌をさがす

注記

Original pub.: [Institute of Physics Publishing]

Reprinted

内容説明・目次

内容説明

Updated and improved, this revised edition of Michel Barsoum's classic text Fundamentals of Ceramics presents readers with an exceptionally clear and comprehensive introduction to ceramic science. Barsoum offers introductory coverage of ceramics, their structures, and properties, with a distinct emphasis on solid state physics and chemistry. Key equations are derived from first principles to ensure a thorough understanding of the concepts involved. The book divides naturally into two parts. Chapters 1 to 9 consider bonding in ceramics and their resultant physical structures, and the electrical, thermal, and other properties that are dependent on bonding type. The second part (Chapters 11 to 16) deals with those factors that are determined by microstructure, such as fracture and fatigue, and thermal, dielectric, magnetic, and optical properties. Linking the two sections is Chapter 10, which describes sintering, grain growth, and the development of microstructure. Fundamentals of Ceramics is ideally suited to senior undergraduate and graduate students of materials science and engineering and related subjects.

目次

INTRODUCTION Introduction Definition of Ceramics Elementary Crystallography Ceramic Microstructures Traditional Versus Advanced Ceramics General Characteristics of Ceramics Applications The Future BONDING IN CERAMICS Introduction Structure of Atoms Ionic versus Covalent Bonding Ionic Bonding Ionically Bonded Solids Covalent Bond Formation Covalently Bonded Solids Band Theory of Solids Summary Appendix 2A: Kinetic Energy of Free Electrons STRUCTURE OF CERAMICS Introduction Ceramic Structures Binary Ionic Compounds Composite Crystal Structures Structure of Covalent Ceramics Structure of Silicates Lattice Parameters and Density Summary Appendix 3A: Ionic Radii EFFECT OF CHEMICAL FORCES ON PHYSICAL PROPERTIES Introduction Melting Points Thermal Expansion Young's Modulus and the Strength of Perfect Solids Surface Energy Summary THERMODYNAMIC AND KINETIC CONSIDERATIONS Introduction Free Energy Chemical Equilibrium and the Mass Action Expression Chemical Stability Domains Electrochemical Potentials Charged Interfaces, Double Layers, and Debye Lengths Gibbs-Duhem Relation for Binary Oxides Kinetic Considerations Summary Appendix 5A: Derivation of Eq. (5.27) DEFECTS IN CERAMICS Introduction Point Defects Linear Defects Planar Defects Summary DIFFUSION AND ELECTRICAL CONDUCTIVITY Introduction Diffusion Electrical Conductivity Ambipolar Diffusion Relationships between Self-, Tracer, Chemical, Ambipolar, and Defect Diffusion Coefficients Summary Appendix 7A: Relationship between Fick's First Law and Eq. (7.30) Appendix 7B: Effective Mass and Density of States Appendix 7C: Derivation of Eq. (7.79) Appendix 7D: Derivation of Eq. (7.92) PHASE EQUILIBRIA Introduction Phase Rule One-Component Systems Binary Systems Ternary Systems Free-Energy Composition and Temperature Diagrams Summary FORMATION, STRUCTURE, AND PROPERTIES OF GLASSES Introduction Glass Formation Glass Structure Glass Properties Glass-Ceramics Summary Appendix 9A: Derivation of Eq. (9.7) SINTERING AND GRAIN GROWTH Introduction Solid-State Sintering Liquid-Phase Sintering Hot Pressing and Hot Isostatic Pressing Summary Appendix 10A: Derivation of the Gibbs-Thompson Equation Appendix 10B: Radii of Curvature Appendix 10C: Derivation of Eq. (10.20) Appendix 10D: Derivation of Eq. (10.22) MECHANICAL PROPERTIES: FAST FRACTURE Introduction Fracture Toughness Strength of Ceramics Toughening Mechanisms Designing with Ceramics Summary CREEP, SUBCRITICAL CRACK GROWTH, AND FATIGUE Introduction Creep Subcritical Crack Growth Fatigue of Ceramics Lifetime Predictions Summary Appendix 12A: Derivation of Eq. (12.24) THERMAL PROPERTIES Introduction Thermal Stresses Thermal Shock Spontaneous Microcracking of Ceramics Thermal Tempering of Glass Thermal Conductivity Summary DIELECTRIC PROPERTIES Introduction Basic Theory Equivalent Circuit Description of Linear Dielectrics Polarization Mechanisms Dielectric Loss Dielectric Breakdown Capacitors and Insulators Summary Appendix 14A: Local Electric Field MAGNETIC AND NONLINEAR DIELECTRIC PROPERTIES Introduction Basic Theory Microscopic Theory Para-, Ferro-, Antiferro-, and Ferrimagnetism Magnetic Domains and the Hysteresis Curve Magnetic Ceramics and their Applications Piezo- and Ferroelectric Ceramics Summary Appendix 15A: Orbital Magnetic Quantum Number OPTICAL PROPERTIES Introduction Basic Principles Absorption and Transmission Scattering and Opacity Fiber Optics and Optical Communication Summary Appendix 16A: Coherence Appendix 16B: Assumptions Made in Deriving Eq. (16.24) INDEX *Each chapter contains Problems and Additional Reading.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB00178885
  • ISBN
    • 9780750309028
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    New York
  • ページ数/冊数
    xviii, 603 p.
  • 大きさ
    24 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ