Fundamentals of switching theory and logic design : a hands on approach
著者
書誌事項
Fundamentals of switching theory and logic design : a hands on approach
Springer, c2006
- タイトル別名
-
Fundamentals of switching theory and logic design
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 325-338) and index
内容説明・目次
内容説明
Fundamentals of Switching Theory and Logic Design discusses the basics of switching theory and logic design from a slightly alternative point of view and also presents links between switching theory and related areas of signal processing and system theory. Switching theory is a branch of applied mathematic providing mathematical foundations for logic design, which can be considered as a part of digital system design concerning realizations of systems whose inputs and outputs are described by logic functions.
目次
Preface. Acronyms. 1. SETS, RELATIONS, AND FUNCTIONS. 1. Sets. 2. Relations. 3. Functions. 4. Representations of Logic Functions. 5. Factored Expressions. 6. Exercises and Problems. 2. ALGEBRAIC STRUCTURES FOR LOGIC DESIGN. 1. Algebraic Structure. 2. Finite Groups. 3. Finite Rings. 4. Finite Fields. 5. Homomorphisms. 6. Matrices. 7. Vector spaces. 8. Algebra. 9. Boolean Algebra. 10. Graphs. 11. Exercises and Problems. 3. FUNCTIONAL EXPRESSIONS FOR SWITCHING FUNCTIONS. 1. Shannon Expansion Rule. 2. Reed-Muller Expansion Rules. 3. Fast Algorithms for Calculation of RM-expressions. 4. Negative Davio Expression. 5. Fixed Polarity Reed-Muller Expressions. 6. Algebraic Structures for Reed-Muller Expressions. 7. Interpretation of Reed-Muller Expressions. 8 Kronecker Expressions. 9. Word-Level Expressions. 10. Walsh Expressions. 11. Walsh Functions and Switching Variables. 12. Walsh Series. 13. Relationships Among Expressions. 14. Generalizations to Multiple-Valued Functions. 15. Exercises and Problems. 4. DECISION DIAGRAMS FOR REPRESENTATION OF SWITCHING FUNCTIONS. 1. Decision Diagrams. 2. Decision Diagrams over Groups. 3. Construction of Decision Diagrams. 4. Shared Decision Diagrams. 5. Multi-terminal binary decision diagrams. 6. Functional Decision Diagrams. 7. Kronecker decision diagrams. 8. Pseudo-Kronecker decision diagrams. 9. Spectral Interpretation of Decision Diagrams. 10. Reduction of Decision Diagrams. 11. Exercises and Problems. 5. CLASSIFICATION OF SWITCHING FUNCTIONS. 1. NPN-classification. 2. SD-Classification. 3. LP-classification. 4. Universal Logic Modules. 5. Exercises and Problems. 6. SYNTHESIS WITH MULTIPLEXERS. 1. Synthesis with Multiplexers. 2. Applications of Multiplexers. 3. Demultiplexers. 4. Synthesis with Demultiplexers. 5. Applications of Demultiplexers. 6. Exercises and Problems. 7. REALIZATIONS WITH ROM. 1. Realizations with ROM. 2. Two-level Addressing in ROM Realizations. 3. Characteristics of Realizations with ROM. 4. Exercises and Problems. 8. REALIZATIONS WITH PROGRAMMABLE LOGIC ARRAYS. 1. Realizations with PLA. 2. The optimization of PLA. 3. Two-level Addressing of PLA. 4. Folding of PLA. 5. Minimization of PLA by Characteristic Functions. 6. Exercises and Problems. 9. UNIVERSAL CELLULAR ARRAYS. 1. Features of Universal Cellular Arrays. 2. Realizations with Universal Cellular Arrays. 3. Synthesis with Macro Cells. 4. Exercises and Problems. 10. FIELD PROGRAMMABLE LOGIC ARRAYS. 1. Synthesis with FPGAs. 2. Synthesis with Antifuse-Based FPGAs. 3. Synthesis with LUT-FPGAs. 4. Exercises and Problems. 11. BOOLEAN DIFFERENCE AND APPLICATIONS IN TESTING LOGIC NETWORKS. 1. Boolean Difference. 2. Properties of the Boolean Difference. 3. Calculation of the Boolean Difference. 4. Boolean Difference in Testing Logic Networks. 5. Easily Testable Logic Networks. 6. Easily Testable Realizations from PPRM-expressions. 7. Easily Testable Realizations from GRM-expressions. 8. Exercises and Problems. 12. SEQUENTIAL NETWORKS. 1. Basic Sequential Machines. 2. State Tables. 3. Conversion of Sequential Machines. 4. Minimization of States. 5. Incompletely Specified Machines. 6. State Assignment. 7. Decomposition of Sequential Machines. 8. Exercises and Problems. 13. REALIZATION OF SEQUENTIAL NETWORKS. 1. Memory Elements. 2. Synthesis of Sequential Networks. 3. Realization of Binary Sequential Machines. 4. Realization of Synchronous Sequential Machines. 5. Pulse Mode Sequential Networks. 6. Asynchronous Sequential Networks. 7. Races and Hazards. 8. Exercises and Problems. References. Index
「Nielsen BookData」 より