MHD flows in compact astrophysical objects : accretion, winds and jets
Author(s)
Bibliographic Information
MHD flows in compact astrophysical objects : accretion, winds and jets
(Astronomy and astrophysics library)
Springer, c2010
- Other Title
-
Осесимметричные ст ационарные течения в астрофизике
Available at / 17 libraries
-
No Libraries matched.
- Remove all filters.
Note
Includes bibliographical references and index
"The work was first published in 2005 by Москва Физматлит with the following title: Осесимметричные ст ационарны е течения в астрофизике." -- t.p. verso
Description and Table of Contents
Description
Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy extraction from a rotating black hole immersed in an external magnetic field. Finally, on the basis of the full MHD version of the Grad-Shafranov equation the author discusses the problems of jet collimation and particle acceleration in Active Galactic Nuclei, radio pulsars, and Young Stellar Objects. The comparison of the analytical results with numerical simulations demonstrates their good agreement. Assuming that the reader is familiar with the basic physical and mathematical concepts of General Relativity, the author uses the 3+1 split approach which allows the formulation of all results in terms of physically clear language of three dimensional vectors. The book contains detailed derivations of equations, numerous exercises, and an extensive bibliography. It therefore serves as both an introductory text for graduate students and a valuable reference work for researchers in the field.
Table of Contents
Preface.............................................................. 5
Introduction......................................................... 9
Chapter 1
Hydrodynamic limit - classical problems of accretion and ejection.... 13
1.1 Astrophysical introduction - accretion onto compact objects.... 13
1 1 1 Accretion disks........................................... 14
1.1.2 Standard model............................................ 17
1.1.3 ADAF, ADIOS, etc.......................................... 20
1.2 Basic properties of transonic hydrodynamical flows............. 22
1.2.1 Basic equations........................................... 22
1.2.2 Spherically symmetric flow................................ 24
1.2.3 Plane potential flow...................................... 27
1.3 Axisymmetric stationary flows - nonrelativistic case........... 34
1.3.1 Basic equations........................................... 34
1.3.2 Mathematical interlude - covariant language............... 35
1.3.3 Structure of the two-dimensional flow..................... 37
1.3.4 Bondi-Hoyle accretion..................................... 45
1.3.5 Ejection from slowly rotating star........................ 49
1.4 Axisymmetric stationary accretion onto black hole.............. 57
1.4.1 Physical interlude - (3+1)-split in the Kerr metric....... 57
1.4.2 Basic equations........................................... 61
1.4.3 Exact solutions........................................... 65
1.4.4 Bondi-Hoyle accretion - relativistic limit................ 67
1.4.5 Accretion onto slowly rotating black hole................. 70
1.4.6 Accretion of a gas with small angular momentum
onto nonrotating black hole......... 71
1.4.7 Thin transonic disk....................................... 77
1.5 Conclusion..................................................... 87
1
Chapter 2
Force-free limit - radio pulsar magnetosphere........................ 89
2.1 Astrophysical introduction..................................... 89
2.2 Main physical processes........................................ 92
2.2.1 Vacuum approximation...................................... 92
2.2.2 Particle creation in a strong magnetic field.............. 96
2.2.3 Structure of the magnetosphere............................ 99
2.3 Generation of secondary plasma.................................104
2.3.1 'Internal gap'............................................104
2.3.2 Neutron star surface......................................109
2.3.3 Propagation of gamma-quanta in superstrong
magnetic field......................110
2.3.4 Effects of the general relativity.........................111
2.3.5 Particle generation in the magnetosphere................. 113
2.3.6 'Hollow cone' model...................................... 114
2.3.7 Particle generation - 'external gap'..................... 119
2.4 Pulsar equation............................................... 119
2.4.1 Force-free approximation. Magnetization parameter........ 119
2.4.2 Electromagnetic field. Integrals of motion............... 121
2.4.3 Grad-Shafranov equation.................................. 124
2.4.4 Mathematical interlude - quasi stationary approach....... 127
2.5 Energy loss of radio pulsars.................................. 130
2.5.1 Current loss mechanism................................... 130
2.5.2 Braking of inclined and orthogonal rotator............... 133
2.6 Structure of the magnetosphere................................ 141
2.6.1 Exact solutions.......................................... 141
2.6.2 Structure of the magnetosphere with longitudinal currents 158
2.6.3 Models of th
by "Nielsen BookData"