Low energy cooling for sustainable buildings
Author(s)
Bibliographic Information
Low energy cooling for sustainable buildings
Wiley, 2009
Available at / 1 libraries
-
No Libraries matched.
- Remove all filters.
Note
Includes bibliographical references (p. [253]-262) and index
Description and Table of Contents
Description
This long-awaited reference guide provides a complete overview of low energy cooling systems for buildings, covering a wide range of existing and emerging sustainable energy technologies in one comprehensive volume. An excellent data source on cooling performance, such as building loads or solar thermal chiller efficiencies, it is essential reading for building services and renewable energy engineers and researchers covering sustainable design. The book is unique in including a large set of experimental results from years of monitoring actual building and energy plants, as well as detailed laboratory and simulation analyses. These demonstrate which systems really work in buildings, what the real costs are and how operation can be optimized - crucial information for planners, builders and architects to gain confidence in applying new technologies in the building sector.
Inside you will find valuable insights into:
the energy demand of residential and office buildings;
facades and summer performance of buildings;
passive cooling strategies;
geothermal cooling;
active thermal cooling technologies, including absorption cooling, desiccant cooling and new developments in low power chillers;
sustainable building operation using simulation.
Supporting case study material makes this a useful text for senior undergraduate students on renewable and sustainable energy courses. Practical and informative, it is the best up-to-date volume on the important and rapidly growing area of cooling.
Table of Contents
Preface. About the Author.
1 Energy Demand of Buildings.
1.1 Residential Buildings.
1.1.1 Heating Energy.
1.1.2 Domestic Hot Water.
1.1.3 Electricity Consumption.
1.2 Office Buildings.
1.2.1 Heating Energy.
1.2.2 Electricity Consumption.
1.2.3 Air Conditioning.
1.3 Conclusions.
2 Facades and Summer Performance of Buildings.
2.1 Review of Facade Systems and Energy Performance.
2.1.1 Single Facades.
2.1.2 Double Facades.
2.1.3 Modelling of Ventilated Facades.
2.2 Experimental Results on Total Energy Transmittance.
2.2.1 Laboratory Experiments.
2.2.2 Building Experiments.
2.3 Cooling Loads through Ventilation Gains.
2.3.1 Double Facade Experiments.
2.3.2 Parameter Study Using Simulation.
2.4 Energy Production from Active Facades.
2.4.1 Thermal and Electrical Energy Balance of the Facade.
2.5 Conclusions on Facade Performance.
3 Passive Cooling Strategies.
3.1 Building Description and Cooling Concepts.
3.1.1 Lamparter Building, Weilheim.
3.1.2 Rehabilitated Office Building in Tubingen.
3.1.3 Low-energy Office Building in Freiburg.
3.2 Passive Night Ventilation Results.
3.2.1 Internal Loads and Temperature Levels.
3.2.2 Air Changes and Thermal Building Performance.
3.2.3 Simulation of Passive Cooling Potential.
3.2.4 Active Night Ventilation.
3.3 Summary of Passive Cooling.
4 Geothermal Cooling.
4.1 Earth Heat Exchanger Performance.
4.1.1 Earth to Air Heat Exchanger in a Passive Standard Office Building.
4.1.2 Performance of Horizontal Earth Brine to Air Heat Exchanger in the eboek Building.
4.1.3 Performance of Vertical Earth Brine to Air Heat Exchanger in the SIC Building.
4.1.4 Modelling of Geothermal Heat Exchangers.
4.1.5 Conclusions on Geothermal Heat Exchangers for Cooling.
5 Active Thermal Cooling Technologies.
5.1 Absorption Cooling.
5.1.1 Absorption Cycles.
5.1.2 Solar Cooling with Absorption Chillers.
5.2 Desiccant Cooling.
5.2.1 Desiccant Cooling System in the Mataro Public Library.
5.2.2 Desiccant Cooling System in the Althengstett Factory.
5.2.3 Monitoring Results in Mataro.
5.2.4 Monitoring Results in Althengstett.
5.2.5 Simulation of Solar-Powered Desiccant Cooling Systems.
5.2.6 Cost Analysis.
5.2.7 Summary of Desiccant Cooling Plant Performance.
5.3 New Developments in Low-Power Chillers.
5.3.1 Development of a Diffusion-Absorption Chiller.
5.3.2 Liquid Desiccant Systems.
6 Sustainable Building Operation Using Simulation.
6.1 Simulation of Solar Cooling Systems.
6.1.1 Component and System Models.
6.1.2 Building Cooling Load Characteristics.
6.1.3 System Simulation Results.
6.1.4 Influence of Dynamic Building Cooling Loads.
6.1.5 Economic Analysis.
6.1.6 Summary of Solar Cooling Simulation Results.
6.2 Online Simulation of Buildings.
6.2.1 Functions and Innovations in Building Management Systems.
6.2.2 Communication Infrastructure for the Implementation of Model-Based Control Systems.
6.2.3 Building Online Simulation in the POLYCITY Project.
6.3 Online Simulation of Renewable Energy Plants.
6.3.1 Photovoltaic System Simulation.
6.3.2 Communication Strategies for Simulation-Based Remote Monitoring.
6.3.3 Online Simulation for the Commissioning and Operation of Photovoltaic Power Plants.
6.3.4 Summary of Renewable Energy Plant Online Simulation.
7 Conclusions.
References.
Index.
by "Nielsen BookData"