Growth, defects, and novel applications
Author(s)
Bibliographic Information
Growth, defects, and novel applications
(Silicon carbide / edited by Peter Friedrichs ... [et al.], 1)
Wiley-VCH, c2010
Available at 15 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
The Institute for Solid State Physics Library. The University of Tokyo.図書室
435.1:S8:17210305111
-
Tokyo University of Agriculture and Technology Koganei Library
501.48/SW160689715,
9783527409532501.48/SW160689715
Note
Includes index
Description and Table of Contents
Description
This book prestigiously covers our current understanding of SiC as a semiconductor material in electronics. Its physical properties make it more promising for high-powered devices than silicon.
The volume is devoted to the material and covers methods of epitaxial and bulk growth. Identification and characterization of defects is discussed in detail. The contributions help the reader to develop a deeper understanding of defects by combining theoretical and experimental approaches.
Apart from applications in power electronics, sensors, and NEMS, SiC has recently gained new interest as a substrate material for the manufacture of controlled graphene. SiC and graphene research is oriented towards end markets and has high impact on areas of rapidly growing interest like electric vehicles.
The list of contributors reads like a "Who's Who" of the SiC community, strongly benefiting from collaborations between research institutions and enterprises active in SiC crystal growth and device development.
Table of Contents
1) Bulk growth of SiC - review on advances of SiC vapor growth for improved doping and systematic study on dislocation evolution
2) Bulk and Epitaxial Growth of Micropipe-free Silicon Carbide on Basal and Rhombohedral Plane Seeds
3) Formation of extended defects in 4H-SiC epitaxial growth and development of fast growth technique
4) Fabrication of High Performance 3C-SiC Vertical MOSFETs by Reducing Planar Defects
5) Identification of intrinsic defects in SiC: Towards an understanding of defect aggregates by combining theoretical and experimental approaches
6) EPR Identification of Intrinsic Defects in 4H-SiC
7) Electrical and Topographical Characterization of Aluminum Implanted Layers in 4H Silicon Carbide
8) Optical properties of as-grown and process-induced stack-ing faults in 4H-SiC
9) Characterization of defects in silicon carbide by Raman spectroscopy
10) Lifetime-killing defects in 4H-SiC epilayers and lifetime control by low-energy electron irradiation
11) Identification and carrier dynamics of the dominant lifetime limiting defect in n- 4H-SiC epitaxial layers
12) Optical Beam Induced Current Measurements: principles and applications to SiC device characterisation
13) Measurements of Impact Ionization Coefficients of Electrons and Holes in 4H-SiC and their Application to Device Simulation
14) Analysis of interface trap parameters from double-peak conductance spectra taken on N-implanted 3C-SiC MOS capacitors
15) Non-basal plane SiC surfaces: Anisotropic structures and low-dimensional electron systems
16) Comparative Columnar Porous Etching Studies on n-type 6H SiC Crystalline faces
17) Micro- and Nanomechanical Structures for Silicon Carbide MEMS and NEMS
18) Epitaxial Graphene: an new Material
19) Density Functional Study of Graphene Overlayers on SiC
by "Nielsen BookData"