Digital imaging and deconvolution : the ABCs of seismic exploration and processing
Author(s)
Bibliographic Information
Digital imaging and deconvolution : the ABCs of seismic exploration and processing
(Geophysical references, v. 15)
Society of Exploration Geophysicists, 2008
- alk. paper
Available at 2 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
Description
Digital Imaging and Deconvolution: The ABCs of Seismic Exploration and Processing (SEG Geophysical References Series No. 15) covers the basic ideas and methods used in seismic processing, concentrating on the fundamentals of seismic imaging and deconvolution. Most chapters are followed by problem sets. Some exercises supplement textual material; others are meant to stimulate classroom discussions. Text and exercises deal mostly with simple examples that can be solved with nothing more than pencil and paper. The book covers wave motion; digital imaging; digital filtering; various visualization aspects of the seismic reflection method; sampling theory; the frequency spectrum; synthetic seismograms; wavelets and wavelet processing; deconvolution; the need for continuing interaction between the seismic interpreter and the computer; seismic attributes; phase rotation; and seismic attenuation. The last of the 15 chapters provides a detailed mathematical overview. Digital Imaging and Deconvolution, nominated for the Association of Earth Science Editors award for best geoscience publication of 2008-2009, will interest professional geophysicists, graduate students, and upper-level undergraduates in geophysics. The book also will be helpful to scientists and engineers in other disciplines who use digital signal processing to analyze and image wave-motion data in remote-detection applications. The methods described are important in optical imaging, video imaging, medical and biological imaging, acoustical analysis, radar, and sonar.
by "Nielsen BookData"