Approximate Reasoning
著者
書誌事項
Approximate Reasoning
(Studies in computational intelligence, v. 202 . Foundations of computational intelligence ; v. 2)
Springer, c2009
大学図書館所蔵 件 / 全1件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Foundations of Computational Intelligence Volume 2: Approximation Reasoning: Theoretical Foundations and Applications Human reasoning usually is very approximate and involves various types of - certainties. Approximate reasoning is the computational modelling of any part of the process used by humans to reason about natural phenomena or to solve real world problems. The scope of this book includes fuzzy sets, Dempster-Shafer theory, multi-valued logic, probability, random sets, and rough set, near set and hybrid intelligent systems. Besides research articles and expository papers on t- ory and algorithms of approximation reasoning, papers on numerical experiments and real world applications were also encouraged. This Volume comprises of 12 chapters including an overview chapter providing an up-to-date and state-of-the research on the applications of Computational Intelligence techniques for - proximation reasoning. The Volume is divided into 2 parts: Part-I: Approximate Reasoning - Theoretical Foundations Part-II: Approximate Reasoning - Success Stories and Real World Applications Part I on Approximate Reasoning - Theoretical Foundations contains four ch- ters that describe several approaches of fuzzy and Para consistent annotated logic approximation reasoning. In Chapter 1, "Fuzzy Sets, Near Sets, and Rough Sets for Your Computational Intelligence Toolbox" by Peters considers how a user might utilize fuzzy sets, near sets, and rough sets, taken separately or taken together in hybridizations as part of a computational intelligence toolbox. In multi-criteria decision making, it is necessary to aggregate (combine) utility values corresponding to several criteria (parameters).
目次
Approximate Reasoning - Theoretical Foundations and Applications.- Fuzzy Sets, Near Sets, and Rough Sets for Your Computational Intelligence Toolbox.- Fuzzy without Fuzzy: Why Fuzzy-Related Aggregation Techniques Are Often Better Even in Situations without True Fuzziness.- Intermediate Degrees Are Needed for the World to Be Cognizable: Towards a New Justification for Fuzzy Logic Ideas.- Paraconsistent Annotated Logic Program Before-after EVALPSN and Its Application.- Approximate Reasoning - Success Stories and Real World Applications.- A Fuzzy Set Approach to Software Reliability Modeling.- Computational Methods for Investment Portfolio: The Use of Fuzzy Measures and Constraint Programming for Risk Management.- A Bayesian Solution to the Modifiable Areal Unit Problem.- Fuzzy Logic Control in Communication Networks.- Adaptation in Classification Systems.- Music Instrument Estimation in Polyphonic Sound Based on Short-Term Spectrum Match.- Ultrasound Biomicroscopy Glaucoma Images Analysis Based on Rough Set and Pulse Coupled Neural Network.- An Overview of Fuzzy C-Means Based Image Clustering Algorithms.
「Nielsen BookData」 より