Global optimization
著者
書誌事項
Global optimization
(Studies in computational intelligence, v. 203 . Foundations of computational intelligence ; v. 3)
Springer, c2009
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Global optimization is a branch of applied mathematics and numerical analysis that deals with the task of finding the absolutely best set of admissible conditions to satisfy certain criteria / objective function(s), formulated in mathematical terms. Global optimization includes nonlinear, stochastic and combinatorial programming, multiobjective programming, control, games, geometry, approximation, algorithms for parallel architectures and so on. Due to its wide usage and applications, it has gained the attention of researchers and practitioners from a plethora of scientific domains. Typical practical examples of global optimization applications include: Traveling salesman problem and electrical circuit design (minimize the path length); safety engineering (building and mechanical structures); mathematical problems (Kepler conjecture); Protein structure prediction (minimize the energy function) etc.
Global Optimization algorithms may be categorized into several types: Deterministic (example: branch and bound methods), Stochastic optimization (example: simulated annealing). Heuristics and meta-heuristics (example: evolutionary algorithms) etc. Recently there has been a growing interest in combining global and local search strategies to solve more complicated optimization problems.
This edited volume comprises 17 chapters, including several overview Chapters, which provides an up-to-date and state-of-the art research covering the theory and algorithms of global optimization. Besides research articles and expository papers on theory and algorithms of global optimization, papers on numerical experiments and on real world applications were also encouraged. The book is divided into 2 main parts.
目次
Global Optimization Algorithms: Theoretical Foundations and Perspectives.- Genetic Algorithms for the Use in Combinatorial Problems.- Bacterial Foraging Optimization Algorithm: Theoretical Foundations, Analysis, and Applications.- Global Optimization Using Harmony Search: Theoretical Foundations and Applications.- Hybrid GRASP Heuristics.- Particle Swarm Optimization: Performance Tuning and Empirical Analysis.- Tabu Search to Solve Real-Life Combinatorial Optimization Problems: A Case of Study.- Reformulations in Mathematical Programming: A Computational Approach.- Graph-Based Local Elimination Algorithms in Discrete Optimization.- Evolutionary Approach to Solving Non-stationary Dynamic Multi-Objective Problems.- Turbulent Particle Swarm Optimization Using Fuzzy Parameter Tuning.- Global Optimization Algorithms: Applications.- An Evolutionary Approximation for the Coefficients of Decision Functions within a Support Vector Machine Learning Strategy.- Evolutionary Computing in Statistical Data Analysis.- Meta-heuristics for System Design Engineering.- Transgenetic Algorithm: A New Endosymbiotic Approach for Evolutionary Algorithms.- Multi-objective Team Forming Optimization for Integrated Product Development Projects.- Genetic Algorithms for Task Scheduling Problem.- PSO_Bounds: A New Hybridization Technique of PSO and EDAs.
「Nielsen BookData」 より