Orthomodular lattices : algebraic approach
Author(s)
Bibliographic Information
Orthomodular lattices : algebraic approach
(Mathematics and its applications, East European series)
D. Reidel, c1985
Related Bibliography 1 items
Available at 1 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes references and indexes
Description and Table of Contents
Description
Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. Bowever, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programmi ng profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "completely integrable systems", "chaos, synergetics and large-s.cale order", which are almost impossible to fit into the existing classifica tion schemes. They draw upon widely different sections of mathe matics.
Table of Contents
I: Introduction.- II: Elementary Theory of Orthomodular Lattices.- 1. Ortholattices.- 2. Commutativity.- 3. Orthomodular lattices.- 4. Properties of commutativity in orthomodular lattices.- 5. Characteristic properties of orthomodular lattices.- 6. Interval algebra.- Exercises.- III: Structure of Orthomodular Lattices.- 1. Skew operations.- 2. Free orthomodular lattice F2.- 3. Introduction to Hilbert spaces.- 4. Projection lattice of a Hilbert space.- Exercises.- IV: Amalgams.- 1. Amalgams of posets.- 2. Amalgams of lattices.- 3. Amalgams of orthomodular lattices.- 4. Atomic amalgams of Boolean algebras.- Exercises.- V: Generalized Orthomodular Lattices.- 1. Orthogonality relation.- 2. Janowitz's embedding.- 3. Congruence relations.- 4. Congruence relations and p-ideals.- 5. Commutators.- Exercises.- VI: Solvability of Generalized Orthomodular Lattices.- 1. Reflective and coreflective congruences.- 2. Projective allelomorph.- 3. Commutator sublattices.- 4. Solvability in equational classes of lattices.- Exercises.- VII: Special Properties of Orthomodularity.- 1. Commutators of n elements.- 2. Finitely generated orthomodular lattices.- 3. Formulas for orthomodular lattices.- 4. Exchange theorems.- 5. Center of an orthomodular lattice.- 6. Identities and operations.- 7. Analogues of Foulis-Holland Theorem.- Exercises.- VIII: Application.- 1. Orthomodularity and experimental propositions.- 2. Compatibility.- 3. Dimension theory.- 4. Orthologics.- Exercises.- Answers to Exercises.- Solutions to Exercises of Chapter II.- Solutions to Exercises of Chapter III.- Solutions to Exercises of Chapter IV.- Solutions to Exercises of Chapter V.- Solutions to Exercises of Chapter VI.- Solutions to Exercises of Chapter VII.- Solutions to Exercises of Chapter VIII.- References.
by "Nielsen BookData"