Applied functional analysis
著者
書誌事項
Applied functional analysis
CRC Press, c2010
2nd ed
- : hbk
大学図書館所蔵 全4件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Through numerous illustrative examples and comments, Applied Functional Analysis, Second Edition demonstrates the rigor of logic and systematic, mathematical thinking. It presents the mathematical foundations that lead to classical results in functional analysis. More specifically, the text prepares students to learn the variational theory of partial differential equations, distributions and Sobolev spaces, and numerical analysis with an emphasis on finite element methods.
While retaining the structure of its best-selling predecessor, this second edition includes revisions of many original examples, along with new examples that often reflect the authors' own vast research experiences and perspectives. This edition also provides many more exercises as well as a solutions manual for qualifying instructors. Each chapter begins with an extensive introduction and concludes with a summary and historical comments that frequently refer to other sources.
New to the Second Edition
Completely revised section on lim sup and lim inf
New discussions of connected sets, probability, Bayesian statistical inference, and the generalized (integral) Minkowski inequality
New sections on elements of multilinear algebra and determinants, the singular value decomposition theorem, the Cauchy principal value, and Hadamard finite part integrals
New example of a Lebesgue non-measurable set
Ideal for a two-semester course, this proven textbook teaches students how to prove theorems and prepares them for further study of more advanced mathematical topics. It helps them succeed in formulating research questions in a mathematically rigorous way.
目次
Preliminaries
Elementary Logic and Set Theory
Relations
Functions
Cardinality of Sets
Foundations of Abstract Algebra
Elementary Topology in Rn
Elements of Differential and Integral Calculus
Linear Algebra
Vector Spaces-The Basic Concepts
Linear Transformations
Algebraic Duals
Euclidean Spaces
Lebesgue Measure and Integration
Lebesgue Measure
Lebesgue Integration Theory
Topological and Metric Spaces
Elementary Topology
Theory of Metric Spaces
Banach Spaces
Topological Vector Spaces
Hahn-Banach Extension Theorem
Bounded (Continuous) Linear Operators on Normed Spaces
Closed Operators
Topological Duals. Weak Compactness
Closed Range Theorem. Solvability of Linear Equations
Hilbert Spaces
Basic Theory
Duality in Hilbert Spaces
Elements of Spectral Theory
References
「Nielsen BookData」 より