The reviewer's guide to quantitative methods in the social sciences
著者
書誌事項
The reviewer's guide to quantitative methods in the social sciences
Routledge, 2010
- : hbk
- : pbk
大学図書館所蔵 全24件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
The Reviewer's Guide to Quantitative Methods in the Social Sciences is designed for evaluators of research manuscripts and proposals in the social and behavioral sciences, and beyond. Its thirty-one uniquely structured chapters cover both traditional and emerging methods of quantitative data analysis, which neither junior nor veteran reviewers can be expected to know in detail. The book updates readers on each technique's key principles, appropriate usage, underlying assumptions, and limitations. It thereby assists reviewers to offer constructive commentary on works they evaluate, and also serves as an indispensable author's reference for preparing sound research manuscripts and proposals.
Key features include:
The chapters cover virtually all of the popular classic and emerging quantitative techniques, thus helping reviewers to evaluate a manuscript's methodological approach and its data analysis. In addition, the volume serves as an indispensable reference tool for those designing their own research.
For ease of use, all chapters follow the same structure:
the opening page of each chapter defines and explains the purpose of that statistical method
the next one or two pages provide a table listing various criteria that should be considered when evaluating and applying that methodological approach to data analysis
the remainder of each chapter contains numbered sections corresponding to the numbered criteria listed in the opening table. Each section explains the role and importance of that particular criterion.
Chapters are written by methodological and applied scholars who are expert in the particular quantitative method being reviewed.
目次
1. Analysis of Variance: Between-Groups Designs Alan J. Klockars 2. Analysis of Variance: Repeated Measures Designs Lisa M. Lix and H.J. Keselman 3. Canonical Correlation Analysis Xitao Fan & Timothy R. Konold 4. Cluster Analysis Dena Pastor 5. Correlation and Other Measures of Association Jason W. Osborne 6. Discriminant Analysis Carl J. Huberty 7. Effect Sizes and Confidence Intervals Geoff Cumming and Fiona Fidler 8. Factor Analysis: Exploratory and Confirmatory Deborah L. Bandalos and Sara J. Finney 9. Generalizability Theory Amy Hendrickson and Ping Yin 10. Hierarchical Linear Modeling D. Betsy McCoach 11. Interrater Reliability William T. Hoyt 12. Item Response Theory R.J. De Ayala 13. Latent Class Analysis Karen M. Samuelsen and C. Mitchell Dayton 14. Latent Growth Curve Models Kristopher J. Preacher 15. Latent Transition Analysis David Rindskopf 16. Latent Variable Mixture Models Gitta Lubke 17. Logistic Regression Ann A. O'Connell and K. Rivet Amico 18. Log-Linear Analysis, Ronald C. Serlin and Michael A. Seaman 19. Meta-Analysis S. Natasha Beretvas 20. Multidimensional Scaling Mark L. Davison, Cody S. Ding and Se-Kang Kim 21. Multiple Regression Ken Kelley and Scott E. Maxwell 22. Multitrait-Multimethod Analysis Keith F. Widaman 23. Multivariate Analysis of Variance Stephen Olejnik 24. Power Analysis Kevin R. Murphy 25. Reliability and Validity of Instruments Thomas R. Knapp and Ralph O. Mueller 26. Research Design Sharon A. Dannels 27. Single-Subject Design and Analysis Andrew L. Egel and Christine H. Barthold 28. Structural Equation Modeling Ralph O. Mueller and Gregory R. Hancock 29. Structural Equation Modeling: Multisample Covariance and Mean Structures Richard G. Lomax 30. Survey Sampling, Administration, and Analysis Laura M. Stapleton 31. Survival Analysis Paul D. Allison
「Nielsen BookData」 より