Statistical modelling for social researchers : principles and practice
著者
書誌事項
Statistical modelling for social researchers : principles and practice
(Social research today / series editor, Martin Bulmer)
Routledge, 2009
- : hbk
- : pbk
並立書誌 全1件
大学図書館所蔵 全5件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [197]-200) and index
内容説明・目次
内容説明
This book explains the principles and theory of statistical modelling in an intelligible way for the non-mathematical social scientist looking to apply statistical modelling techniques in research. The book also serves as an introduction for those wishing to develop more detailed knowledge and skills in statistical modelling. Rather than present a limited number of statistical models in great depth, the aim is to provide a comprehensive overview of the statistical models currently adopted in social research, in order that the researcher can make appropriate choices and select the most suitable model for the research question to be addressed. To facilitate application, the book also offers practical guidance and instruction in fitting models using SPSS and Stata, the most popular statistical computer software which is available to most social researchers. Instruction in using MLwiN is also given.
Models covered in the book include; multiple regression, binary, multinomial and ordered logistic regression, log-linear models, multilevel models, latent variable models (factor analysis), path analysis and simultaneous equation models and models for longitudinal data and event histories. An accompanying website hosts the datasets and further exercises in order that the reader may practice developing statistical models.
An ideal tool for postgraduate social science students, research students and practicing social researchers in universities, market research, government social research and the voluntary sector.
目次
1. Statistical Modelling: An Overview 2. Research Designs and Data 3. Statistical Preliminaries 4. Multiple Regression for Continuous Response Variables 5. Logistic Regression for Binary Response Variables 6. Multinomial Logistic Regression for Multinomial Response Variables 7. Loglinear Modelling 8. Ordinal Logistic Regression for Ordered Categorical Response Variables 9. Multilevel Modelling 10. Latent Variables and Factor Analysis 11. Causal Modelling: Simultaneous Equation and Structural Equation Models 12. Longitudinal Data Analysis 13. Event History Models
「Nielsen BookData」 より