Statistical modelling for social researchers : principles and practice
Author(s)
Bibliographic Information
Statistical modelling for social researchers : principles and practice
(Social research today / series editor, Martin Bulmer)
Routledge, 2009
- : hbk
- : pbk
Related Bibliography 1 items
Available at 5 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. [197]-200) and index
Description and Table of Contents
Description
This book explains the principles and theory of statistical modelling in an intelligible way for the non-mathematical social scientist looking to apply statistical modelling techniques in research. The book also serves as an introduction for those wishing to develop more detailed knowledge and skills in statistical modelling. Rather than present a limited number of statistical models in great depth, the aim is to provide a comprehensive overview of the statistical models currently adopted in social research, in order that the researcher can make appropriate choices and select the most suitable model for the research question to be addressed. To facilitate application, the book also offers practical guidance and instruction in fitting models using SPSS and Stata, the most popular statistical computer software which is available to most social researchers. Instruction in using MLwiN is also given.
Models covered in the book include; multiple regression, binary, multinomial and ordered logistic regression, log-linear models, multilevel models, latent variable models (factor analysis), path analysis and simultaneous equation models and models for longitudinal data and event histories. An accompanying website hosts the datasets and further exercises in order that the reader may practice developing statistical models.
An ideal tool for postgraduate social science students, research students and practicing social researchers in universities, market research, government social research and the voluntary sector.
Table of Contents
1. Statistical Modelling: An Overview 2. Research Designs and Data 3. Statistical Preliminaries 4. Multiple Regression for Continuous Response Variables 5. Logistic Regression for Binary Response Variables 6. Multinomial Logistic Regression for Multinomial Response Variables 7. Loglinear Modelling 8. Ordinal Logistic Regression for Ordered Categorical Response Variables 9. Multilevel Modelling 10. Latent Variables and Factor Analysis 11. Causal Modelling: Simultaneous Equation and Structural Equation Models 12. Longitudinal Data Analysis 13. Event History Models
by "Nielsen BookData"