Support vector machines for pattern classification

書誌事項

Support vector machines for pattern classification

Shigeo Abe

(Advances in pattern recognition)

Springer, c2010

2nd ed

  • : pbk.

大学図書館所蔵 件 / 10

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors.

目次

Introduction Two-Class Support Vector Machines Multiclass Support Vector Machines Variants of Support Vector Machines Training Methods Kernel-Based Methods Feature Selection and Extraction Clustering Maximum-Margin Multilayer Neural Networks Maximum-Margin Fuzzy Classifiers Function Approximation.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ