On a conjecture of E.M. Stein on the Hilbert transform on vector fields

著者

    • Lacey, Michael T. (Michael Thoreau)
    • Li, Xiaochun

書誌事項

On a conjecture of E.M. Stein on the Hilbert transform on vector fields

Michael Lacey, Xiaochun Li

(Memoirs of the American Mathematical Society, no. 965)

American Mathematical Society, c2010

大学図書館所蔵 件 / 11

この図書・雑誌をさがす

注記

"Volume 205, number 965 (fourth of 5 numbers)."

Includes bibliographical references (p. 71-72)

内容説明・目次

内容説明

Let $v$ be a smooth vector field on the plane, that is a map from the plane to the unit circle. The authors study sufficient conditions for the boundedness of the Hilbert transform $\textrm{H}_{v, \epsilon }f(x) := \text{p.v.}\int_{-\epsilon}^{\epsilon} f(x-yv(x))\;\frac{dy}y$ where $\epsilon$ is a suitably chosen parameter, determined by the smoothness properties of the vector field. Table of Contents: Overview of principal results; Besicovitch set and Carleson's theorem; The Lipschitz Kakeya maximal function; The $L^2$ estimate; Almost orthogonality between annuli. (MEMO/205/965)

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ