Logic : the basics
著者
書誌事項
Logic : the basics
(The basics)
Routledge, 2010
- : pbk
大学図書館所蔵 全10件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. [176]-178
Includes index
内容説明・目次
内容説明
Logic: The Basics is a hands-on introduction to the philosophically alive field of logical inquiry. Covering both classical and non-classical theories, it presents some of the core notions of logic such as validity, basic connectives, identity, `free logic' and more. This book:
introduces some basic ideas of logic from a semantic and philosophical perspective
uses logical consequence as the focal concept throughout
considers some of the controversies and rival logics that make for such a lively field
This accessible guide includes chapter summaries and suggestions for further reading as well as exercises and sample answers throughout. It is an ideal introduction for those new to the study of logic as well as those seeking to gain the competence and skills needed to move to more advanced work in logic.
目次
I BACKGROUND IDEAS 1. Consequences 1.1 Relations of support 1.2 Logical consequence: the basic recipe 1.3 Valid arguments and truth 1.4 Summary, looking ahead, and reading 2. Language, Form, and Logical Theories 2.1 Language 2.2 Atoms, connectives, and molecules 2.3 Connectives and form 2.4 Validity and form 2.5 Language and formal languages 2.6 Logical theories: rivalry 3. Set-theoretic Tools 3.1 Sets 3.2 Ordered sets: pairs and n-tuples 3.3 Relations 3.4 Functions 3.5 Sets as tools. II BASIC CONNECTIVES 4. Classical Theory 4.1 Cases: complete and consistent 4.2 Classical 'truth conditions' 4.3 Basic classical consequence 4.4 Motivation: precision 4.5 Formal picture 4.6 Defined connectives 4.7 Some notable valid forms 4.8 Summary and looking ahead 5. A Paracomplete Theory 5.1 Apparent unsettledness 5.2 Cases: incomplete 5.3 Paracomplete truth and falsity conditions 5.4 Paracomplete consequence 5.5 Formal picture 5.6 Defined connectives 5.7 Some notable forms 5.8 Summary and looking ahead 6. A Paraconsistent Theory 6.1 Apparent overdeterminacy 6.2 Cases: inconsistent 6.3 Paraconsistent 'truth conditions' 6.4 Paraconsistent consequence 6.5 Formal picture 6.6 Defined connectives 6.7 Some notable forms 6.8 Summary and looking ahead. III INNARDS, IDENTITY, AND QUANTIFIERS 7. Atomic Innards 7.1 Atomic innards: names and predicates 7.2 Truth and falsity conditions for atomics 7.3 Cases, domains, and interpretation functions 7.4 Classical, paracomplete and paraconsistent 7.5 A formal picture 7.6 Summary and looking ahead 8. Identity 8.1 Logical expressions and logical form 8.2 Validity involving identity 8.3 Identity: informal sketch 8.4 Truth conditions: informal sketch 8.5 Formal picture 8.6 Summary and looking ahead 9. Everything and Something 9.1 Validity involving quantifiers 9.2 Quantifiers: an informal sketch 9.3 Truth and falsity conditions 9.4 A formal picture 9.5 Paraconsistent, paracomplete, classical 9.6 Summary and looking ahead. IV FREEDOM, NECESSITY, AND BEYOND 10. Speaking Freely 10.1 Speaking of non-existent 'things' 10.2 Existential import 10.3 Freeing our terms, expanding our domains 10.4 Truth conditions: an informal sketch 10.5 Formal picture 11. Possibilities 11.1 Possibility and necessity 11.2 Towards truth and falsity conditions 11.3 Cases and consequence 11.4 Formal picture 11.5 Remark on going beyond possibility 12. Glimpsing Different Logical Roads 12.1 Other conditionals 12.2 Other negations 12.3 Other alethic modalities: actuality 12.4 Same connectives, different truth conditions 12.5 Another road to difference: consequence. A List of Common Abbreviations. References.
「Nielsen BookData」 より