Introduction to feedback control
著者
書誌事項
Introduction to feedback control
Prentice Hall, c2010
- : alk. paper
大学図書館所蔵 全5件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 430-435) and index
内容説明・目次
内容説明
For undergraduate courses in control theory at the junior or senior level.
Introduction to Feedback Control, First Edition updates classical control theory by integrating modern optimal and robust control theory using both classical and modern computational tools. This text is ideal for anyone looking for an up-to-date book on Feedback Control.
Although there are many textbooks on this subject, authors Li Qiu and Kemin Zhou provide a contemporary view of control theory that includes the development of modern optimal and robust control theory over the past 30 years. A significant portion of well-known classical control theory is maintained, but with consideration of recent developments and available modern computational tools.
目次
1 Overview 1
1.1 Introduction
1.2 Basic Concepts
1.3 Basic Structures of Feedback Systems
1.4 About This Book
1.5 Problems
1.6 Notes and References
2 Modeling and Simulation 15
2.1 Modeling Based on First Principles
2.1.1 Electrical systems
2.1.2 Mechanical systems
2.1.3 Electromechanical systems
2.2 State Space Model and Linearization
2.3 Transfer Functions and Impulse Responses
2.4 Simplifying Block Diagrams
2.5 Transfer FunctionModeling
2.6 MATLAB Manipulation of LTI Systems
2.7 Simulation and Implementation of Systems
2.7.1 Hardware simulation and implementation
2.7.2 Software simulation and implementation
2.8 MISO and SIMO Systems
2.9 Modeling of Closed-Loop Systems
2.10 Case Studies
2.10.1 Ball and beam system
2.10.2 Inverted pendulum system
2.11 Problems
2.12 Notes and References
3 Stability and Stabilization
3.1 Concept of Stability
3.2 Routh Criterion
3.3 Other Stability Criteria
3.4 Robust Stability
3.5 Stability of Closed-Loop Systems
3.6 Pole PlacementDesign
3.7 All Stabilizing Controllers*
3.8 All Stabilizing 2DOF Controllers*
3.9 Case Studies
3.9.1 Ball and beamsystem
3.9.2 Inverted pendulum system
3.10 Problems
3.11 Notes and References
4 Time Domain Analysis
4.1 Responses to Typical Input Signals
4.2 Step Response Analysis
4.3 Dominant Poles and Zeros
4.4 Steady-State Response and System Type
4.5 InternalModel Principle
4.6 Undershoot
4.7 Overshoot
4.8 Time-Domain Signal and System Norms
4.9 Computation of the Time Domain 2-Norm
4.10 Problems
4.11 Notes and References
5 Root Locus Method
5.1 Root Locus Techniques
5.2 Derivations of Root Locus Rules*
5.3 Effects of Adding Poles and Zeros
5.4 Phase-Lag Controller
5.5 PI Controller
5.6 Phase-Lead Controller
5.7 PD Controller
5.8 Lead-Lag or PID Controller
5.9 2DOF Controllers
5.10 General Guidelines in Root Locus Design
5.11 Complementary Root Locus
5.12 Strong Stabilization
5.13 Case Study - Ball and Beam System
5.14 Problems
5.15 Notes and References
6 Frequency Domain Analysis
6.1 Frequency Response
6.2 Bode Diagrams
6.3 Nyquist Stability Criterion
6.4 Gain Margin and Phase Margin
6.5 Closed-loop Frequency Response
6.6 Nichols Chart
6.7 Riemann Plot
6.8 Problems
6.9 Notes and References
7 Classical Design in Frequency Domain
7.1 Phase-Lag Controller
7.2 PI Controller
7.3 Phase-Lead Controller
7.4 PD Controller
7.5 Lead-Lag or PID Controller
7.6 Ziegler and Nichols Tuning Rules
7.7 Derivative Control
7.8 Alternative PID Implementation
7.9 Integral Control and Antiwindup
7.10 Design by Loopshaping
7.11 Bode's Gain and Phase Relation
7.12 Bode's Sensitivity Integral
7.13 Problems
7.14 Notes and References
8 Performance and Robustness
8.1 Frequency Domain 2-Norm of Signals and Systems
8.2 Frequency Domain 8-Normof Systems
8.3 Model Uncertainties and Robust Stability
8.4 Chordal and Spherical Distances
8.5 Distance between Systems
8.6 Uncertainty and Robustness
8.7 Problems
8.8 Notes and References
9 Optimal and Robust Control
9.1 Controller with Optimal Transient
9.2 Controller with Weighted Optimal Transient
9.3 Minimum Energy Stabilization
9.4 Derivation of the Optimal Controller*
9.5 Optimal Robust Stabilization
9.6 Stabilization with Guaranteed Robustness
9.7 Problems
9.8 Notes and References
Bibliography
A Laplace Transform
A.1 Definition
A.2 Properties
A.3 Inverse Laplace Transform
A.4 Problems
A.5 Notes and References
B Matrices and Polynomials
B.1 Matrices
B.2 Polynomials
B.3 Problems
B.4 Notes and References
「Nielsen BookData」 より