Heegner points and Rankin L-series
著者
書誌事項
Heegner points and Rankin L-series
(Mathematical Sciences Research Institute publications, 49)
Cambridge University Press, 2010, c2004
- pbk:
大学図書館所蔵 全3件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
内容説明・目次
内容説明
The seminal formula of Gross and Zagier relating heights of Heegner points to derivatives of the associated Rankin L-series has led to many generalisations and extensions in a variety of different directions, spawning a fertile area of study that remains active to this day. This volume, based on a workshop on Special Values of Rankin L-series held at the MSRI in December 2001, is a collection of thirteen articles written by many of the leading contributors in the field, having the Gross-Zagier formula and its avatars as a common unifying theme. It serves as a valuable reference for mathematicians wishing to become further acquainted with the theory of complex multiplication, automorphic forms, the Rankin-Selberg method, arithmetic intersection theory, Iwasawa theory, and other topics related to the Gross-Zagier formula.
目次
- 1. Preface Henri Darmon and Shour-Wu Zhang
- 2. Heegner points: the beginnings Bryan Birch
- 3. Correspondence Bryan Birch and Benedict Gross
- 4. The Gauss class number problem for imaginary quadratic fields Dorian Goldfeld
- 5. Heegner points and representation theory Brian Conrad (with an appendix by W. R. Mann)
- 6. Special value formulae for Rankin L-functions Vinayak Vatsal
- 7. Gross-Zagier formula for GL(2), II Shou-Wu Zhang
- 8. Special cycles and derivatives in Eisenstein series Stephen Kudla
- 9. Faltings' height and the Derivatives of Eisenstein series Tonghai Yang
- 10. Elliptic curves and analogies between number fields and function fields Doug Ulmer
- 11. Heegner points and elliptic curves of large rank over function fields Henri Darmon
- 12. Periods and points attached to quadratic algebras Massimo Bertolini and Peter Green.
「Nielsen BookData」 より