Bibliographic Information

Quantum field theory and particles

Yorikiyo Nagashima

(Elementary particle physics / Yorikiyo Nagashima, v. 1)

Wiley-VCH, c2010

Available at  / 18 libraries

Search this Book/Journal

Note

Includes bibliographical references and index

Description and Table of Contents

Description

ACCOUNTING PRINCIPLES Meeting the need for a coherently written and comprehensive compendium combining field theory and particle physics for advanced students and researchers, this volume directly links the theory to the experiments. It is clearly divided into two sections covering approaches to field theory and the Standard Model, and rounded off with numerous useful appendices. A timely work for high energy and theoretical physicists, as well as astronomers, graduate students and lecturers in physics. From the contents: Particles and Fields Lorentz Invariance Dirac Equation Field Quantization Scattering Matrix QED: Quantum Electrodynamics Radiative Corrections and Tests of Qed Symmetries Path Integral : Basics Path Integral Approach to Field Theory Accelerator and Detector Technology Spectroscopy The Quark Model Weak Interaction Neutral Kaons and CP Violation Hadron Structure Gauge Theories Appendices Volume 2 (2013, ISBN 3-527-40966-1) will concentrate on the main aspects of the Standard Model by addressing its recent developments and future prospects. Furthermore, it will give some thought to intriguing ideas beyond the Standard Model, including the Higgs boson, the neutrino, the concepts of the Grand Unified Theory and supersymmetry, axions, and cosmological developments.

Table of Contents

Foreword V Preface XVII Acknowledgements XXI Part One a Field Theoretical Approach 1 1 Introduction 3 1.1 An Overview of the Standard Model 3 1.1.1 What is an Elementary Particle? 3 1.1.2 The Four Fundamental Forces and Their Unification 4 1.1.3 The Standard Model 7 1.2 The Accelerator as a Microscope 11 2 Particles and Fields 13 2.1 What is a Particle? 13 2.2 What is a Field? 21 2.2.1 Force Field 21 2.2.2 Relativistic Wave Equation 25 2.2.3 Matter Field 27 2.2.4 Intuitive Picture of a Field and Its Quantum 28 2.2.5 Mechanical Model of a Classical Field 29 2.3 Summary 32 2.4 Natural Units 33 3 Lorentz Invariance 37 3.1 Rotation Group 37 3.2 Lorentz Transformation 41 3.2.1 General Formalism 41 3.2.2 Lorentz Vectors and Scalars 43 3.3 Space Inversion and Time Reversal 45 3.4 Covariant Formalism 47 3.4.1 Tensors 47 3.4.2 Covariance 48 3.4.3 Supplementing the Time Component 49 3.4.4 Rapidity 51 3.5 Lorentz Operator 53 3.6 Poincare Group* 56 4 Dirac Equation 59 4.1 Relativistic Schroedinger Equation 59 4.1.1 Dirac Matrix 59 4.1.2 Weyl Spinor 61 4.1.3 Interpretation of the Negative Energy 64 4.1.4 Lorentz-Covariant Dirac Equation 69 4.2 Plane-Wave Solution 71 4.3 Properties of the Dirac Particle 75 4.3.1 Magnetic Moment of the Electron 75 4.3.2 Parity 77 4.3.3 Bilinear Form of the Dirac Spinor 78 4.3.4 Charge Conjugation 79 4.3.5 Chiral Eigenstates 82 4.4 Majorana Particle 84 5 Field Quantization 89 5.1 Action Principle 89 5.1.1 Equations of Motion 89 5.1.2 Hamiltonian Formalism 90 5.1.3 Equation of a Field 91 5.1.4 Noether's Theorem 95 5.2 Quantization Scheme 100 5.2.1 Heisenberg Equation of Motion 100 5.2.2 Quantization of the Harmonic Oscillator 102 5.3 Quantization of Fields 105 5.3.1 Complex Fields 106 5.3.2 Real Field 111 5.3.3 Dirac Field 112 5.3.4 Electromagnetic Field 114 5.4 Spin and Statistics 119 5.5 Vacuum Fluctuation 121 5.5.1 The Casimir Effect* 122 6 Scattering Matrix 127 6.1 Interaction Picture 127 6.2 Asymptotic Field Condition 131 6.3 Explicit Form of the S-Matrix 133 6.3.1 Rutherford Scattering 135 6.4 Relativistic Kinematics 136 6.4.1 Center of Mass Frame and Laboratory Frame 136 6.4.2 Crossing Symmetry 139 6.5 Relativistic Cross Section 141 6.5.1 Transition Rate 141 6.5.2 Relativistic Normalization 142 6.5.3 Incoming Flux and Final State Density 144 6.5.4 Lorentz-Invariant Phase Space 145 6.5.5 Cross Section in the Center of Mass Frame 145 6.6 Vertex Functions and the Feynman Propagator 147 6.6.1 ee Vertex Function 147 6.6.2 Feynman Propagator 151 6.7 Mott Scattering 157 6.7.1 Cross Section 157 6.7.2 Coulomb Scattering and Magnetic Scattering 161 6.7.3 Helicity Conservation 161 6.7.4 A Method to Rotate Spin 161 6.8 Yukawa Interaction 162 7 Qed: Quantum Electrodynamics 167 7.1 e- Scattering 167 7.1.1 Cross Section 167 7.1.2 Elastic Scattering of Polarized e- 171 7.1.3 e_ e+ + _ + Reaction 174 7.2 Compton Scattering 176 7.3 Bremsstrahlung 181 7.3.1 Soft Bremsstrahlung 183 7.4 Feynman Rules 186 8 Radiative Corrections and Tests of Qed* 191 8.1 Radiative Corrections and Renormalization* 191 8.1.1 Vertex Correction 191 8.1.2 Ultraviolet Divergence 193 8.1.3 Infrared Divergence 197 8.1.4 Infrared Compensation to All Orders* 199 8.1.5 Running Coupling Constant 204 8.1.6 Mass Renormalization 208 8.1.7 Ward-Takahashi Identity 210 8.1.8 Renormalization of the Scattering Amplitude 211 8.2 Tests of QED 213 8.2.1 Lamb Shift 213 8.2.2g - 2 214 8.2.3 Limit of QED Applicability 216 8.2.4 E821 BNL Experiment 216 9 Symmetries 221 9.1 Continuous Symmetries 222 9.1.1 Space and Time Translation 223 9.1.2 Rotational Invariance in the Two-Body System 227 9.2 Discrete Symmetries 233 9.2.1 Parity Transformation 233 9.2.2 Time Reversal 240 9.3 Internal Symmetries 251 9.3.1 U(1) Gauge Symmetry 251 9.3.2 Charge Conjugation 252 9.3.3 CPT Theorem 258 9.3.4 SU(2) (Isospin) Symmetry 260 10 Path Integral: Basics 267 10.1 Introduction 267 10.1.1 Bra and Ket 267 10.1.2 Translational Operator 268 10.2 Quantum Mechanical Equations 271 10.2.1 Schroedinger Equation 271 10.2.2 Propagators 272 10.3 Feynman's Path Integral 274 10.3.1 Sum over History 274 10.3.2 Equivalence with the Schroedinger Equation 278 10.3.3 Functional Calculus 279 10.4 Propagators: Simple Examples 282 10.4.1 Free-Particle Propagator 282 10.4.2 Harmonic Oscillator 285 10.5 Scattering Matrix 294 10.5.1 Perturbation Expansion 295 10.5.2 S-Matrix in the Path Integral 297 10.6 Generating Functional 300 10.6.1 Correlation Functions 300 10.6.2 Note on Imaginary Time 302 10.6.3 Correlation Functions as Functional Derivatives 304 10.7 Connection with Statistical Mechanics 306 11 Path Integral Approach to Field Theory 311 11.1 From Particles to Fields 311 11.2 Real Scalar Field 312 11.2.1 Generating Functional 312 11.2.2 Calculation of det A 315 11.2.3 n-Point Functions and the Feynman Propagator 318 11.2.4 Wick's Theorem 319 11.2.5 Generating Functional of Interacting Fields 320 11.3 Electromagnetic Field 321 11.3.1 Gauge Fixing and the Photon Propagator 321 11.3.2 Generating Functional of the Electromagnetic Field 323 11.4 Dirac Field 324 11.4.1 Grassmann Variables 324 11.4.2 Dirac Propagator 331 11.4.3 Generating Functional of the Dirac Field 332 11.5 Reduction Formula 333 11.5.1 Scalar Fields 333 11.5.2 Electromagnetic Field 337 11.5.3 Dirac Field 337 11.6 QED 340 11.6.1 Formalism 340 11.6.2 Perturbative Expansion 342 11.6.3 First-Order Interaction 343 11.6.4 Mott Scattering 345 11.6.5 Second-Order Interaction 346 11.6.6 Scattering Matrix 351 11.6.7 Connected Diagrams 353 11.7 Faddeev-Popov's Ansatz* 354 11.7.1 A Simple Example* 355 11.7.2 Gauge Fixing Revisited* 356 11.7.3 Faddeev-Popov Ghost* 359 12 Accelerator and Detector Technology 363 12.1 Accelerators 363 12.2 Basic Parameters of Accelerators 364 12.2.1 Particle Species 364 12.2.2 Energy 366 12.2.3 Luminosity 367 12.3 Various Types of Accelerators 369 12.3.1 Low-Energy Accelerators 369 12.3.2 Synchrotron 373 12.3.3 Linear Collider 377 12.4 Particle Interactions with Matter 378 12.4.1 Some Basic Concepts 378 12.4.2 Ionization Loss 381 12.4.3 Multiple Scattering 389 12.4.4 Cherenkov and Transition Radiation 390 12.4.5 Interactions of Electrons and Photons with Matter 394 12.4.6 Hadronic Shower 401 12.5 Particle Detectors 403 12.5.1 Overview of Radioisotope Detectors 403 12.5.2 Detectors that Use Light 404 12.5.3 Detectors that Use Electric Signals 410 12.5.4 Functional Usage of Detectors 415 12.6 Collider Detectors 422 12.7 Statistics and Errors 428 12.7.1 Basics of Statistics 428 12.7.2 Maximum Likelihood and Goodness of Fit 433 12.7.3 Least Squares Method 438 13 Spectroscopy 443 13.1 Pre-accelerator Age (1897-1947) 444 13.2 Pions 449 13.3 N Interaction 454 13.3.1 Isospin Conservation 454 13.3.2 Partial Wave Analysis 462 13.3.3 Resonance Extraction 466 13.3.4 Argand Diagram: Digging Resonances 472 13.4 w (770) 475 13.5 Final State Interaction 478 13.5.1 Dalitz Plot 478 13.5.2 K Meson 481 13.5.3 Angular Momentum Barrier 484 13.5.4 Meson 485 13.6 Low-Energy Nuclear Force 487 13.6.1 Spin-Isospin Exchange Force 487 13.6.2 Effective Range 490 13.7 High-Energy Scattering 491 13.7.1 Black Sphere Model 491 13.7.2 Regge Trajectory* 494 14 The Quark Model 501 14.1 SU(3) Symmetry 501 14.1.1 The Discovery of Strange Particles 502 14.1.2 The Sakata Model 505 14.1.3 Meson Nonets 507 14.1.4 The Quark Model 509 14.1.5 Baryon Multiplets 510 14.1.6 General Rules for Composing Multiplets 511 14.2 Predictions of SU(3) 513 14.2.1 Gell-Mann-Okubo Mass Formula 513 14.2.2 Prediction of 514 14.2.3 Meson Mixing 516 14.3 Color Degrees of Freedom 519 14.4 SU(6) Symmetry 522 14.4.1 Spin and Flavor Combined 522 14.4.2 SU(6) _ O(3) 525 14.5 Charm Quark 525 14.5.1 J/ 525 14.5.2 Mass and Quantum Number of J/ 527 14.5.3 Charmonium 527 14.5.4 Width of J/ 533 14.5.5 Lifetime of Charmed Particles 536 14.5.6 Charm Spectroscopy: SU(4) 537 14.5.7 The Fifth Quark b (Bottom) 539 14.6 Color Charge 539 14.6.1 Color Independence 542 14.6.2 Color Exchange Force 544 14.6.3 Spin Exchange Force 545 14.6.4 Mass Formulae of Hadrons 547 15 Weak Interaction 553 15.1 Ingredients of the Weak Force 553 15.2 Fermi Theory 555 15.2.1 Beta Decay 555 15.2.2 Parity Violation 562 15.2.3 Meson Decay 564 15.3 Chirality of the Leptons 567 15.3.1 Helicity and Angular Correlation 567 15.3.2 Electron Helicity 569 15.4 The Neutrino 571 15.4.1 Detection of the Neutrino 571 15.4.2 Mass of the Neutrino 572 15.4.3 Helicity of the Electron Neutrino 576 15.4.4 The Second Neutrino 578 15.5 The Universal V-A Interaction 579 15.5.1 Muon Decay 579 15.5.2 CVC Hypothesis 584 15.6 Strange Particle Decays 589 15.6.1 S = Q Rule 589 15.6.2 I = 1/2 Rule 591 15.6.3 Kl3 : K+ 0 + l+ + 592 15.6.4 Cabibbo Rotation 596 15.7 Flavor Conservation 598 15.7.1 GIM Mechanism 598 15.7.2 Kobayashi-Maskawa Matrix 600 15.7.3 Tau Lepton 601 15.7.4 The Generation Puzzle 605 15.8 A Step Toward a Unified Theory 608 15.8.1 Organizing the Weak Phenomena 608 15.8.2 Limitations of the Fermi Theory 610 15.8.3 Introduction of SU(2) 614 16 Neutral Kaons and CP Violation* 617 16.1 Introduction 618 16.1.1 Strangeness Eigenstates and CP Eigenstates 618 16.1.2 Schroedinger Equation for K0 - K0 States 619 16.1.3 Strangeness Oscillation 622 16.1.4 Regeneration of K1 626 16.1.5 Discovery of CP Violation 630 16.2 Formalism of CP and CPT Violation 632 16.2.1 CP, T, CPT Transformation Properties 632 16.2.2 Definition of CP Parameters 635 16.3 CP Violation Parameters 640 16.3.1 Observed Parameters 640 16.3.2 and ' 644 16.4 Test of T and CPT Invariance 653 16.4.1 Definition of T- and CPT-Violating Amplitudes 654 16.4.2 T Violation 654 16.4.3 CPT violation 656 16.4.4 Possible Violation of Quantum Mechanics 662 16.5 Experiments on CP Parameters 664 16.5.1 CPLEAR 664 16.5.2 NA48/KTeV 666 16.6 Models of CP Violation 673 17 Hadron Structure 679 17.1 Historical Overview 679 17.2 Form Factor 680 17.3 e-p Elastic Scattering 683 17.4 Electron Proton Deep Inelastic Scattering 687 17.4.1 Cross-Section Formula for Inelastic Scattering 687 17.4.2 Bjorken Scaling 690 17.5 Parton Model 693 17.5.1 Impulse Approximation 693 17.5.2 Electron-Parton Scattering 696 17.6 Scattering with Equivalent Photons 699 17.6.1 Transverse and Longitudinal Photons 699 17.6.2 Spin of the Target 702 17.6.3 Photon Flux 703 17.7 How to Do Neutrino Experiments 705 17.7.1 Neutrino Beams 705 17.7.2 Neutrino Detectors 709 17.8 -p Deep Inelastic Scattering 712 17.8.1 Cross Sections and Structure Functions 712 17.8.2 , -q Scattering 715 17.8.3 Valence Quarks and Sea Quarks 716 17.8.4 Comparisons with Experimental Data 717 17.8.5 Sum Rules 719 17.9 Parton Model in Hadron-Hadron Collisions 721 17.9.1 Drell-Yan Process 721 17.9.2 Other Hadronic Processes 724 17.10 A Glimpse of QCD's Power 725 18 Gauge Theories 729 18.1 Historical Prelude 729 18.2 Gauge Principle 731 18.2.1 Formal Definition 731 18.2.2 Gravity as a Geometry 733 18.2.3 Parallel Transport and Connection 734 18.2.4 Rotation in Internal Space 737 18.2.5 Curvature of a Space 739 18.2.6 Covariant Derivative 741 18.2.7 Principle of Equivalence 743 18.2.8 General Relativity and Gauge Theory 745 18.3 Aharonov-Bohm Effect 748 18.4 Nonabelian Gauge Theories 754 18.4.1 Isospin Operator 754 18.4.2 Gauge Potential 755 18.4.3 Isospin Force Field and Equation of Motion 757 18.5 QCD 760 18.5.1 Asymptotic Freedom 762 18.5.2 Confinement 767 18.6 Unified Theory of the Electroweak Interaction 770 18.6.1 SU(2) _ U(1) Gauge Theory 770 18.6.2 Spontaneous Symmetry Breaking 774 18.6.3 Higgs Mechanism 778 18.6.4 Glashow-Weinberg-Salam Electroweak Theory 782 18.6.5 Summary of GWS Theory 784 19 Epilogue 787 19.1 Completing the Picture 788 19.2 Beyond the Standard Model 789 19.2.1 Neutrino Oscillation 789 19.2.2 GUTs: Grand Unified Theories 791 19.2.3 Supersymmetry 792 19.2.4 Superstring Model 795 19.2.5 Extra Dimensions 796 19.2.6 Dark Matter 797 19.2.7 Dark Energy 798 Appendix A Spinor Representation 803 A.1 Definition of a Group 803 A.1.1 Lie Group 804 A.2 SU(2) 805 A.3 Lorentz Operator for Spin 1/2 Particle 809 A.3.1 SL(2, C) Group 809 A.3.2 Dirac Equation: Another Derivation 811 Appendix B Coulomb Gauge 813 B.1 Quantization of the Electromagnetic Field in the Coulomb Gauge 814 Appendix C Dirac Matrix and Gamma Matrix Traces 817 C.1 Dirac Plane Wave Solutions 817 C.2 Dirac Matrices 817 C.2.1 Traces of the Matrices 818 C.2.2 Levi-Civita Antisymmetric Tensor 819 C.3 Spin Sum of |Mfi|2 819 C.3.1 A Frequently Used Example 820 C.3.2 Polarization Sum of the Vector Particle 822 C.4 Other Useful Formulae 823 Appendix D Dimensional Regularization 825 D.1 Photon Self-Energy 825 D.2 Electron Self-Energy 830 Appendix E Rotation Matrix 833 E.1 Angular Momentum Operators 833 E.2 Addition of the Angular Momentum 835 E.3 Rotational Matrix 835 Appendix F C, P, T Transformation 839 Appendix G SU(3), SU(n) and the Quark Model 841 G.1 Generators of the Group 841 G.1.1 Adjoint Representation 842 G.1.2 Direct Product 843 G.2 SU(3) 844 G.2.1 Structure Constants 844 G.2.2 Irreducible Representation of a Direct Product 846 G.2.3 Tensor Analysis 851 G.2.4 Young Diagram 854 Appendix H Mass Matrix and Decaying States 859 H.1 The Decay Formalism 859 Appendix I Answers to the Problems 865 Appendix J Particle Data 915 Appendix K Constants 917 References 919 Index 929

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

Page Top