Click chemistry for biotechnology and materials science

著者

    • Lahann, Joerg

書誌事項

Click chemistry for biotechnology and materials science

edited by Joerg Lahann

Wiley, 2009

大学図書館所蔵 件 / 5

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

Mimicking natural biochemical processes, click chemistry is a modular approach to organic synthesis, joining together small chemical units quickly, efficiently and predictably. In contrast to complex traditional synthesis, click reactions offer high selectivity and yields, near-perfect reliability and exceptional tolerance towards a wide range of functional groups and reaction conditions. These 'spring loaded' reactions are achieved by using a high thermodynamic driving force, and are attracting tremendous attention throughout the chemical community. Originally introduced with the focus on drug discovery, the concept has been successfully applied to materials science, polymer chemistry and biotechnology. The first book to consider this topic, Click Chemistry for Biotechnology and Materials Science examines the fundamentals of click chemistry, its application to the precise design and synthesis of macromolecules, and its numerous applications in materials science and biotechnology. The book surveys the current research, discusses emerging trends and future applications, and provides an important nucleation point for research. Edited by one of the top 100 young innovators with the greatest potential to have an impact on technology in the 21st century according to Technology Review and with contributions from pioneers in the field, Click Chemistry for Biotechnology and Materials Science provides an ideal reference for anyone wanting to learn more about click reactions.

目次

Preface xiii List of Contributors xv Acknowledgments xix 1 Click Chemistry: A Universal Ligation Strategy for Biotechnology and Materials Science 1 Joerg Lahann 1.1 Introduction 1 1.2 Selected Examples of Click Reactions in Materials Science and Biotechnology 2 1.3 Potential Limitations of Click Chemistry 5 1.4 Conclusions 5 References 6 2 Common Synthons for Click Chemistry in Biotechnology 9 Christine Schilling, Nicole Jung and Stefan Brase 2.1 Introduction - Click Chemistry 9 2.2 Peptides and Derivatives 10 2.3 Peptoids 12 2.4 Peptidic Dendrimers 13 2.5 Oligonucleotides 14 2.6 Carbohydrates 18 2.7 Conclusion 25 References 26 3 Copper-free Click Chemistry 29 Jeremy M. Baskin and Carolyn R. Bertozzi 3.1 Introduction 29 3.2 Bio-orthogonal Ligations 30 3.2.1 Condensations of Ketones and Aldehydes with Heteroatom-bound Amines 31 3.2.2 Staudinger Ligation of Phosphines and Azides 32 3.2.3 Copper-free Azide-Alkyne Cycloadditions 35 3.2.4 Bioorthogonal Ligations of Alkenes 37 3.3 Applications of Copper-free Click Chemistries 38 3.3.1 Activity-based Profiling of Enzymes 38 3.3.2 Site-specific Labeling of Proteins 39 3.3.3 Metabolic Labeling of Glycans 41 3.3.4 Metabolic Targeting of Other Biomolecules with Chemical Reporters 44 3.4 Summary and Outlook 45 References 46 4 Protein and Peptide Conjugation to Polymers and Surfaces Using Oxime Chemistry 53 Heather D. Maynard, Rebecca M. Broyer and Christopher M. Kolodziej 4.1 Introduction 53 4.2 Protein/Peptide-Polymer Conjugates 54 4.3 Immobilization of Proteins and Peptides on Surfaces 60 4.4 Conclusions 66 References 67 5 The Role of Click Chemistry in Polymer Synthesis 69 Jean-Francois Lutz and Brent S. Sumerlin 5.1 Introduction 69 5.2 Polymerization via CuAAC 70 5.3 Post-polymerization Modification via Click Chemistry 72 5.4 Polymer-Biomacromolecule Conjugation 76 5.5 Functional Nanomaterials 81 5.6 Summary and Outlook 83 References 85 6 Blocks, Stars and Combs: Complex Macromolecular Architecture Polymers via Click Chemistry 89 Sebastian Sinnwell, Andrew J. Inglis, Martina H. Stenzel and Christopher Barner-Kowollik 6.1 Introduction 89 6.2 Block Copolymers 91 6.2.1 Preparing Polymers for Click Conjugations 92 6.2.2 The Click Reaction: Methodologies and Isolation 96 6.2.3 Polymer Characterization 99 6.3 Star Polymers 101 6.3.1 Star polymers An 101 6.3.2 Dentritic Star Polymers 107 6.4 Graft Copolymers 107 6.4.1 'Grafting-to' Azide Main Chains 109 6.4.2 'Grafting-to' Alkyne Main Chains 111 6.4.3 Non-CuAAC Routes 113 6.5 Concluding Remarks 113 References 113 7 Click Chemistry on Supramolecular Materials 119 Wolfgang H. Binder and Robert Sachsenhofer 7.1 Introduction 119 7.2 Click Reactions on Rotaxanes, Cyclodextrines and Macrocycles 123 7.2.1 Click with Rotaxanes 123 7.2.2 Click on Cyclodextrines 126 7.2.3 Click on Macrocycles 128 7.3 Click Reactions on DNA 131 7.4 Click Reactions on Supramolecular Polymers 138 7.5 Click Reactions on Membranes 143 7.6 Click Reactions on Dendrimers 147 7.7 Click Reactions on Gels and Networks 147 7.8 Click Reactions on Self-assembled Monolayers 153 References 164 8 Dendrimer Synthesis and Functionalization by Click Chemistry for Biomedical Applications 177 Daniel Q. McNerny, Douglas G. Mullen, Istvan J. Majoros, Mark M. Banaszak Holl and James R. Baker Jr 8.1 Introduction 177 8.2 Dendrimer Synthesis 181 8.2.1 Divergent Synthesis 181 8.2.2 Convergent Synthesis 183 8.3 Dendrimer Functionalization 184 8.4 Conclusions and Future Directions 189 References 191 9 Reversible Diels-Alder Cycloaddition for the Design of Multifunctional Network Polymers 195 Amy M. Peterson and Giuseppe R. Palmese 9.1 Introduction 195 9.2 Design of Polymer Networks 198 9.3 Application of Diels-Alder Linkages to Polymer Systems 199 9.3.1 Molecular Weight Control of Linear Polymers 200 9.3.2 Remoldable Crosslinked Materials 202 9.3.3 Thermally Removable Encapsulants 203 9.3.4 Reversibly Crosslinked Polymer-Solvent Gels 203 9.3.5 Remendable Materials 204 9.3.6 Recyclable Thermosets 206 9.3.7 Smart Materials 207 9.4 Conclusions 209 References 209 10 Click Chemistry in the Preparation of Biohybrid Materials 217 Heather J. Kitto, Jan Lauko, Floris P. J. T. Rutjes and Alan E. Rowan 10.1 Introduction 217 10.2 Polymer-containing Biohybrid Materials 218 10.2.1 Polymers from Controlled Techniques 218 10.2.2 Bio-inspired Polymers via Click Chemistry 220 10.3 Biohybrid Structures based on Protein Conjugates 228 10.4 Biohybrid Amphiphiles 232 10.5 Glycoconjugates 236 10.5.1 Carbohydrate Clusters 236 10.5.2 Glycopeptides 238 10.5.3 Glycopolymers 244 10.6 Conclusions 247 References 247 11 Functional Nanomaterials using the Cu-catalyzed Huisgen Cycloaddition Reaction 255 Sander S. van Berkel, Arnold W.G. Nijhuis, Dennis W.P.M. Loewik and Jan C.M. van Hest 11.1 Introduction 255 11.2 Inorganic Nanoparticles 256 11.2.1 Silicon-based Nanoparticles 256 11.2.2 Cadmium Selenide-based Nanoparticles 257 11.2.3 Ferric Oxide-based Nanoparticles 257 11.2.4 Gold-based Nanoparticles 261 11.3 Carbon-based Nanomaterials 266 11.3.1 Fullerenes 267 11.3.2 Carbon Nanotubes 269 11.4 Self-assembled Organic Structures 272 11.4.1 Liposomes 274 11.4.2 Polymersomes 275 11.4.3 Micelles and Cross-linked Nanoparticles 278 11.5 Virus Particles 281 11.6 Conclusions 284 References 285 12 Copper-catalyzed 'Click' Chemistry for Surface Engineering 291 Himabindu Nandivada and Joerg Lahann 12.1 Introduction 291 12.2 Synthesis of Alkyne or Azide-functionalized Surfaces 292 12.2.1 Self-assembled Monolayers of Alkanethiolates 292 12.2.2 Self-assembled Monolayers of Silanes and Siloxanes 292 12.2.3 Block Copolymers 294 12.2.4 Layer-by-layer Films 296 12.2.5 Chemical Vapor Deposition Polymerization 297 12.2.6 Fiber Networks 298 12.3 Spatially Controlled Click Chemistry 299 12.4 Copper-catalyzed Click Chemistry for Bioimmobilization 300 12.5 Summary 305 References 305 13 Click Chemistry in Protein Engineering, Design, Detection and Profiling 309 Daniela C. Dieterich and A. James Link 13.1 Introduction 309 13.2 Posttranslational Functionalization of Proteins with Azides and Alkynes 310 13.3 Cotranslational Functionalization of Proteins with Azides and Alkynes 314 13.4 BONCAT: Identification of Newly Synthesized Proteins via Noncanonical Amino Acid Tagging 318 13.5 Conclusions and Future Prospects 321 References 322 14 Fluorogenic Copper(I)-catalyzed Azide-Alkyne Cycloaddition Reactions Reactions and their Applications in Bioconjugation 327 Celine Le Droumaguet and Qian Wang 14.1 Click Reaction for Bioconjugation Applications 327 14.2 Significance of Fluorogenic Reactions in Bioconjugation 328 14.3 CuAAC-based Fluorogenic Reaction 332 14.4 Applications of CuAAC in Bioconjugation 337 14.4.1 Fluorogenic Probing of Cellular Components 339 14.4.2 Fluorogenic Conjugation of DNA 341 14.4.3 Fluorogenic Conjugation of Viruses 344 14.4.4 Fluorogenic Conjugation of Nanoparticles/Polymers 345 14.5 Conclusions 348 References 349 15 Synthesis and Functionalization of Biomolecules via Click Chemistry 355 Christine Schilling, Nicole Jung and Stefan Brase 15.1 Introduction 355 15.2 Labeling of Macromolecular Biomolecules 356 15.2.1 Fluorescent Labeling 356 15.2.2 Labeling of Bovine Serum Albumin 360 15.2.3 Biotin-labeling of Biomolecules: ABPP 361 15.2.4 Fluorine Labeling 364 15.3 Syntheses of Natural Products and Derivatives 365 15.4 Enzymes and Click Chemistry 368 15.5 Synthesis of Glycosylated Molecular Architectures 371 15.6 Synthesis of Nitrogen-rich Compounds: Polyazides and Triazoles 373 15.7 Conclusions 374 References 375 16 Unprecedented Electro-optic Properties in Polymers and Dendrimers Enabled by Click Chemistry Based on the Diels-Alder Reactions 379 Jingdong Luo, Tae-Dong Kim and Alex K.-Y. Jen 16.1 Introduction 379 16.2 Diels-Alder Click Chemistry for Highly Efficient Side-chain E-O Polymers 380 16.3 Diels-Alder Click Chemistry for Crosslinkable E-O Polymers Containing Binary NLO Chromophores 388 16.4 Diels-Alder Click Chemistry for NLO Dendrimers 392 16.5 Conclusions 394 References 397 Index 399

「Nielsen BookData」 より

詳細情報

ページトップへ