Biomimetic and bioinspired nanomaterials

Bibliographic Information

Biomimetic and bioinspired nanomaterials

edited by Challa S. S. R. Kumar

(Nanomaterials for the life sciences / edited by Challa S.S.R. Kumar, v. 7)

Wiley-VCH, c2010

Available at  / 7 libraries

Search this Book/Journal

Note

Includes bibliographical references and index

Description and Table of Contents

Description

The book series Nanomaterials for the Life Sciences, provides an in-depth overview of all nanomaterial types and their uses in the life sciences. Each volume is dedicated to a specific material class and covers fundamentals, synthesis and characterization strategies, structure-property relationships and biomedical applications. The series brings nanomaterials to the Life Scientists and life science to the Materials Scientists so that synergies are seen and developed to the fullest. Written by international experts of various facets of this exciting field of research, the series is aimed at scientists of the following disciplines: biology, chemistry, materials science, physics, bioengineering, and medicine, together with cell biology, biomedical engineering, pharmaceutical chemistry, and toxicology, both in academia and fundamental research as well as in pharmaceutical companies. VOLUME 7 - Biomimetic and Bioinspired Nanomaterials

Table of Contents

Preface The Gecko and Its Adhesion Capabilities The Physics of Gecko Adhesion Fabrication Methods for Gecko-Inspired Adhesives Measuring Adhesion What Have We Learned About Fibrillar Adhesives? Applications in the Life Sciences Summary and Future Perspectives TOOTH-INSPIRED NANOCOMPOSITES Introduction Enamel Dentin Summary and Future Perspective BIOINSPIRED NANOMATERIALS FOR TISSUE ENGINEERING Introduction Biomimetic Material Properties Nanofiber Scaffold Fabrication Methods Modification of Nanofibrous Scaffolds Biological Effects of Nanofibers Conclusions BIOMIMETIC AND BIOINSPIRED SELF-ASSEMBLED PEPTIDE NANOSTRUCTURES Introduction Peptide-Based Self-Assembling Nanomaterials Matrices for Tissue Engineering and Regenerative Medicine Virus-Based and Virus-Inspired Nanomaterials Biomimetic Nanotubes BIOINSPIRED LAYERED NANOMATERIALS IN MEDICAL THERAPY Introduction Features of Layered Nanomaterials Layered Nanomaterials in Medical Applications Toxicity Conclusions BIOLOGICAL AND BIOMIMETIC SYNTHESIS OF METAL NANOMATERIALS Introduction Synthesis of Au/Ag Nanomaterials by Whole Organisms Synthesis of Au/Ag Nanomaterials by Biomolecule Mixtures Synthesis of Au/Ag Nanomaterials by Proteins Synthesis of Au/Ag Nanomaterials by Amino Acids/Peptides Conclusions BIOMIMETIC NANOSENSORS AND NANOACTUATORS Introduction Three-Dimensional Fabrication of BNNs Electrically Induced Robotic Actuation Distributed Nanosensing and Transduction Modeling and Simulation BIOMIMETIC NANOTECHNOLOGY Introduction Biocrystal Growth via Environmentally Friendly Nature-Mimetic Processing Biomimetic Morphology Control of Metal Oxides and Their Site-Selective Immobilization Application of Biomimetic Super-Hydrophobic Surfaces to Micropatterning of Biomolecules Summary and Outlook BIOMIMETIC APPROACHES TO SELF-ASSEMBLY OF NANOMATERIALS Introduction Self-Assembly Polypeptide-Based Nanomaterials Self-Assembly of Hybrid Nanomaterials Nanoparticle Assembly in Biodiagnostics Conclusions and Outlook BIOMIMETIC ARTIFICIAL NANOSTRUCTURED SURFACES Introduction Learning from Nature: Properties of Natural Nanostructured Surfaces Fabrication of Biomimetic Artificial Nanostructures Applications of Biomimetic Artificial Nanostructures Conclusions and Future Outlook NATURAL AND MODIFIED NANOMATERIALS FOR ENVIRONMENTAL APPLICATIONS Introduction Aluminosilicate Nanomaterials Environmental Applications of Aluminosilicate Nanomaterials Assessment of Aluminosilicate Nanomaterials for Environmental Applications Summary and Future Perspectives S-LAYER PROTEIN LATTICES STUDIED BY SCANNING FORCE MIRCOSCOPY Introduction Description of S-Layer Proteins S-Layer Protein Microstructures S-Layer Protein Reassembly at Interphases S-Layer Proteins Lattices with Functional Groups for Recognition Imaging and Molecule Templating Reassembly of S-Layer Proteins on Solid Supports with Modified Surface Properties Applications Summary and Conclusions NANOSCALE DEFORMATION MECHANISMS IN BIOLOGICAL TISSUES Introduction Approaches to Investigating Nanoscale Deformation of Biocomposites Nanoscale Deformation Mechanisms in Mineralized Tissues Deformation in Hypermineralized Systems: Enamel and Abalone Nacre Mechanics of the All-Organic Nanocomposite of the Wood Cell Wall Summary and Outlook

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BB03361301
  • ISBN
    • 9783527321674
  • Country Code
    gw
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Weinheim
  • Pages/Volumes
    xxii, 564 p.
  • Size
    25 cm
  • Classification
  • Subject Headings
  • Parent Bibliography ID
Page Top