A friendly introduction to numerical analysis
著者
書誌事項
A friendly introduction to numerical analysis
Pearson Prentice Hall, c2006
- : hbk
- タイトル別名
-
Numerical analysis
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"With C and Matlab materials on website"--cover
Includes bibliographical references and index
内容説明・目次
内容説明
For one or two-semester undergraduate/graduate-level courses in Numerical Analysis/Methods in mathematics departments, CS departments, and all engineering departments. This student-friendly text develops concepts and techniques in a clear, concise, easy-to-read manner, followed by fully-worked examples. Application problems drawn from the literature of many different fields prepares students to use the techniques covered to solve a wide variety of practical problems.
目次
(NOTE: Each chapter begins with An Overview.)
1. Getting Started.
Algorithms. Convergence. Floating Point Numbers. Floating Point Arithmetic.
2. Rootfinding.
Bisection Method. Method of False Position. Fixed Point Iteration. Newton's Method. The Secant Method and Muller's Method. Accelerating Convergence. Roots of Polynomials.
3. Systems of Equations.
Gaussian Elimination. Pivoting Strategies. Norms. Error Estimates. LU Decomposition. Direct Factorization. Special Matrices. Iterative Techniques for Linear Systems: Basic Concepts and Methods. Iterative Techniques for Linear Systems: Conjugate-Gradient Method. Nonlinear Systems.
4. Eigenvalues and Eigenvectors.
The Power Method. The Inverse Power Method. Deflation. Reduction to Tridiagonal Form. Eigenvalues of Tridiagonal and Hessenberg Matrices.
5. Interpolation and Curve Fitting.
Lagrange Form of the Interpolating Polynomial. Neville's Algorithm. The Newton Form of the Interpolating Polynomial and Divided Differences. Optimal Interpolating Points. Piecewise Linear Interpolation. Hermite and Hermite Cubic Interpolation. Regression.
6. Numerical Differentiation and Integration.
Continuous Theory and Key Numerical Concepts. Euler's Method. Higher-Order One-Step Methods. Multistep Methods. Convergence Analysis. Error Control and Variable Step Size Algorithms. Systems of Equations and Higher-Order Equations. Absolute Stability and Stiff Equations.
7. Numerical Methods for Initial Value Problems of Ordinary Differential Equations.
Continuous Theory and Key Numerical Concepts. Euler's Method. Higher-Order One-Step Methods. Multistep Methods. Convergence Analysis. Error Control and Variable Step Size Algorithms. Systems of Equations and Higher-Order Equations. Absolute Stability and Stiff Equations.
8. Second-Order One-Dimensional Two-Point Boundary Value Problems.
Finite Difference Method, Part I: The Linear Problem with Dirichlet Boundary Conditions. Finite Difference Method, Part II: The Linear Problem with Non-Dirichlet Boundary Conditions. Finite Difference Method, Part III: Nonlinear Problems. The Shooting Method, Part I: Linear Boundary Value Problems. The Shooting Method, Part II: Nonlinear Boundary Value Problems.
9. Finite Difference Method for Elliptic Partial Differential Equations.
The Poisson Equation on a Rectangular Domain, I: Dirichlet Boundary Conditions. The Poisson Equation on a Rectangular Domain, II: Non-Dirichlet Boundary Conditions. Solving the Discrete Equations: Relaxation Schemes. Local Mode Analysis of Relaxation and the Multigrid Method. Irregular Domains.
10. Finite Difference Method for Parabolic Partial Differential Equations.
The Heat Equation with Dirichlet Boundary Conditions. Stability. More General Parabolic Equations. Non-Dirichlet Boundary Conditions. Polar Coordinates. Problems in Two Space Dimensions.
11. Finite Difference Method for Hyperbolic Partial Differential Equations and the Convection-Diffusion Equation.
Advection Equation, I: Upwind Differencing. Advection Equation, II: MacCormack Method. Convection-Diffusion Equation. The Wave Equation.
Appendices.
Appendix A. Important Theorems from Calculus. Appendix B. Algorithm for Solving a Tridiagonal System of Linear Equations.
References.
Index.
Answers to Selected Problems.
「Nielsen BookData」 より