Unsupervised signal processing : channel equalization and source separation
Author(s)
Bibliographic Information
Unsupervised signal processing : channel equalization and source separation
CRC Press, c2011
Available at 2 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. 285-302) and index
Description and Table of Contents
Description
Unsupervised Signal Processing: Channel Equalization and Source Separation provides a unified, systematic, and synthetic presentation of the theory of unsupervised signal processing. Always maintaining the focus on a signal processing-oriented approach, this book describes how the subject has evolved and assumed a wider scope that covers several topics, from well-established blind equalization and source separation methods to novel approaches based on machine learning and bio-inspired algorithms.
From the foundations of statistical and adaptive signal processing, the authors explore and elaborate on emerging tools, such as machine learning-based solutions and bio-inspired methods. With a fresh take on this exciting area of study, this book:
Provides a solid background on the statistical characterization of signals and systems and on linear filtering theory
Emphasizes the link between supervised and unsupervised processing from the perspective of linear prediction and constrained filtering theory
Addresses key issues concerning equilibrium solutions and equivalence relationships in the context of unsupervised equalization criteria
Provides a systematic presentation of source separation and independent component analysis
Discusses some instigating connections between the filtering problem and computational intelligence approaches.
Building on more than a decade of the authors' work at DSPCom laboratory, this book applies a fresh conceptual treatment and mathematical formalism to important existing topics. The result is perhaps the first unified presentation of unsupervised signal processing techniques-one that addresses areas including digital filters, adaptive methods, and statistical signal processing. With its remarkable synthesis of the field, this book provides a new vision to stimulate progress and contribute to the advent of more useful, efficient, and friendly intelligent systems.
Table of Contents
Introduction. Statistical Characterization of Signals and Systems. Linear Optimal and Adaptive Filtering. Unsupervised Channel Equalization. Unsupervised Multichannel Equalization. Blind Source Separation. Nonlinear Filtering and Machine Learning. Bio-Inspired Optimization Methods. Appendices.
by "Nielsen BookData"