Developing multi-database mining applications
著者
書誌事項
Developing multi-database mining applications
(Advanced information and knowledge processing)
Springer, c2010
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Multi-database mining has been recognized recently as an important and strategically essential area of research in data mining. In this book, we discuss various issues regarding the systematic and efficient development of multi-database mining applications. It explains how systematically one could prepare data warehouses at different branches. As appropriate multi-database mining technique is essential to develop better applications. Also, the efficiency of a multi-database mining application could be improved by processing more patterns in the application. A faster algorithm could also play an important role in developing a better application. Thus the efficiency of a multi-database mining application could be enhanced by choosing an appropriate multi-database mining model, an appropriate pattern synthesizing technique, a better pattern representation technique, and an efficient algorithm for solving the problem. This book illustrates each of these issues either in the context of a specific problem, or in general.
目次
Chapter 1: Introduction
1.1 Motivation
1.2 Distributed Data Mining
1.3 Existing Multi-database Mining Approaches
1.4 Applications of Multi-database Mining
1.5 Improving Multi-database Mining
1.6 Future Directions
Chapter 2: An Extended Model of Local Pattern Analysis
2.1 Introduction
2.2 Some Extreme Types of Association Rules in Multiple Databases
2.3 An Extended Model of Local Pattern Analysis for Synthesizing Global Patterns from Local Patterns in Different Databases
2.4 An Application: Synthesizing Heavy Association Rules in Multiple Real Databases
2.5 Conclusions
Chapter 3: Mining Multiple Large Databases
3.1 Introduction
3.2. Multi-database Mining Using Local Pattern Analysis
3.3. Generalized Multi-database Mining Techniques
3.4. Specialized Multi-database Mining Techniques
3.5. Mining Multiple Databases Using Pipelined Feedback Model (PFM)
3.6. Error Evaluation
3.7. Experiments
3.8. Conclusions
Chapter 4: Mining Patterns of Select Items in Multiple Databases
4.1 Introduction
4.2 Mining Global Patterns of Select Items
4.3 Overall Association Between Two Items in a Database
4.4 An Application: Study of Select Items in Multiple Databases by Grouping
4.5 Related work
4.6 Conclusions
Chapter 5: Enhancing Quality of Knowledge Synthesized from Multi-database Mining
5.1 Introduction
5.2 Related work
5.3. Simple Bit Vector (SBV) Coding
5.4 Antecedent-consequent Pair (ACP) Coding
5.5 Experiments
5.6 Conclusions
Chapter 6: Efficient Clustering of Databases Induced by Local Patterns
6.1 Introduction
6.2 Problem Statement
6.3 Related Work
6.4 Clustering Databases
6.5 Experiments
6.6 Conclusions
Chapter 7: A Framework for Developing Effective Multi-database Mining Applications
7.1 Introduction
7.2 Shortcomings of Existing Approaches to Multi-database Mining
7.3 Improving Multi-database Mining Applications
7.4 Conclusions
References
Index
「Nielsen BookData」 より