Worlds out of nothing : a course in the history of geometry in the 19th century
Author(s)
Bibliographic Information
Worlds out of nothing : a course in the history of geometry in the 19th century
(Springer undergraduate mathematics series)
Springer, c2011
[2nd ed.]
Available at 12 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Previous ed.: 2007
Includes bibliographical references (p. 359-376) and index
Description and Table of Contents
Description
Based on the latest historical research, Worlds Out of Nothing is the first book to provide a course on the history of geometry in the 19th century. Topics covered in the first part of the book are projective geometry, especially the concept of duality, and non-Euclidean geometry. The book then moves on to the study of the singular points of algebraic curves (Plucker's equations) and their role in resolving a paradox in the theory of duality; to Riemann's work on differential geometry; and to Beltrami's role in successfully establishing non-Euclidean geometry as a rigorous mathematical subject. The final part of the book considers how projective geometry rose to prominence, and looks at Poincare's ideas about non-Euclidean geometry and their physical and philosophical significance.
Three chapters are devoted to writing and assessing work in the history of mathematics, with examples of sample questions in the subject, advice on how to write essays, and comments on what instructors should be looking for.
Table of Contents
Mathematics in the French Revolution.- Poncelet (and Pole and Polar).- Theorems in Projective Geometry.- Poncelet's Traite.- Duality and the Duality Controversy.- Poncelet, Chasles, and the Early Years of Projective Geometry.- Euclidean Geometry, the Parallel Postulate, and the Work of Lambert and Legendre.- Gauss (Schweikart and Taurinus) and Gauss's Differential Geometry.- Janos Bolyai.- Lobachevskii.- Publication and Non-Reception up to 1855.- On Writing the History of Geometry - 1.- Across the Rhine - Moebius's Algebraic Version of Projective Geometry.- Plucker, Hesse, Higher Plane Curves, and the Resolution of the Duality Paradox.- The Plucker Formulae.- The Mathematical Theory of Plane Curves.- Complex Curves.- Riemann: Geometry and Physics.- Differential Geometry of Surfaces.- Beltrami, Klein, and the Acceptance of Non-Euclidean Geometry.- On Writing the History of Geometry - 2.- Projective Geometry as the Fundamental Geometry.- Hilbert and his Grundlagen der Geometrie.- The Foundations of Projective Geometry in Italy.- Henri Poincare and the Disc Model of non-Euclidean Geometry.- Is the Geometry of Space Euclidean or Non-Euclidean?.- Summary: Geometry to 1900.- What is Geometry? The Formal Side.- What is Geometry? The Physical Side.- What is Geometry? Is it True? Why is it Important?.- On Writing the History of Geometry - 3.
by "Nielsen BookData"