Sphere packings, lattices and groups
Author(s)
Bibliographic Information
Sphere packings, lattices and groups
(Die Grundlehren der mathematischen Wissenschaften, 290)
Springer, c2010
3rd ed
- : [pbk]
Available at 8 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. [574]-641) and index
Supplementary bibliography (1988-1998): p. [642]-679
Description and Table of Contents
Description
The third edition of this definitive and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also examine such related issues as the kissing number problem, the covering problem, the quantizing problem, and the classification of lattices and quadratic forms. There is also a description of the applications of these questions to other areas of mathematics and science such as number theory, coding theory, group theory, analogue-to-digital conversion and data compression, n-dimensional crystallography, dual theory and superstring theory in physics. New and of special interest is a report on some recent developments in the field, and an updated and enlarged supplementary bibliography with over 800 items.
Table of Contents
1 Sphere Packings and Kissing Numbers.- 2 Coverings, Lattices and Quantizers.- 3 Codes, Designs and Groups.- 4 Certain Important Lattices and Their Properties.- 5 Sphere Packing and Error-Correcting Codes.- 6 Laminated Lattices.- 7 Further Connections Between Codes and Lattices.- 8 Algebraic Constructions for Lattices.- 9 Bounds for Codes and Sphere Packings.- 10 Three Lectures on Exceptional Groups.- 11 The Golay Codes and the Mathieu Groups.- 12 A Characterization of the Leech Lattice.- 13 Bounds on Kissing Numbers.- 14 Uniqueness of Certain Spherical Codes.- 15 On the Classification of Integral Quadratic Forms.- 16 Enumeration of Unimodular Lattices.- 17 The 24-Dimensional Odd Unimodular Lattices.- 18 Even Unimodular 24-Dimensional Lattices.- 19 Enumeration of Extremal Self-Dual Lattices.- 20 Finding the Closest Lattice Point.- 21 Voronoi Cells of Lattices and Quantization Errors.- 22 A Bound for the Covering Radius of the Leech Lattice.- 23 The Covering Radius of the Leech Lattice.- 24 Twenty-Three Constructions for the Leech Lattice.- 25 The Cellular Structure of the Leech Lattice.- 26 Lorentzian Forms for the Leech Lattice.- 27 The Automorphism Group of the 26-Dimensional Even Unimodular Lorentzian Lattice.- 28 Leech Roots and Vinberg Groups.- 29 The Monster Group and its 196884-Dimensional Space.- 30 A Monster Lie Algebra?.- Supplementary Bibliography.
by "Nielsen BookData"