Quantum materials : lateral semiconductor nanostructures, hybrid systems and nanocrystals

Bibliographic Information

Quantum materials : lateral semiconductor nanostructures, hybrid systems and nanocrystals

Detlef Heitmann, editor

(Nanoscience and technology)

Springer, c2010

  • : hbk.

Available at  / 4 libraries

Search this Book/Journal

Note

Includes bibliographical references and index

Description and Table of Contents

Description

Semiconductor nanostructures are ideal systems to tailor the physical properties via quantum effects, utilizing special growth techniques, self-assembling, wet chemical processes or lithographic tools in combination with tuneable external electric and magnetic fields. Such systems are called "Quantum Materials".The electronic, photonic, and phononic properties of these systems are governed by size quantization and discrete energy levels. The charging is controlled by the Coulomb blockade. The spin can be manipulated by the geometrical structure, external gates and by integrating hybrid ferromagnetic emitters.This book reviews sophisticated preparation methods for quantum materials based on III-V and II-VI semiconductors and a wide variety of experimental techniques for the investigation of these interesting systems. It highlights selected experiments and theoretical concepts and gives such a state-of-the-art overview about the wide field of physics and chemistry that can be studied in these systems.

Table of Contents

Self-Assembly of Quantum Dots and Rings on Semiconductor Surfaces.- Curved Two-Dimensional Electron Systems in Semiconductor Nanoscrolls.- Capacitance Spectroscopy on Self-Assembled Quantum Dots.- The Different Faces of Coulomb Interaction in Transport Through Quantum Dot Systems.- Far-Infrared Spectroscopy of Low-Dimensional Electron Systems.- Electronic Raman Spectroscopy of Quantum Dots.- Light Confinement in Microtubes.- Scanning Tunneling Spectroscopy of Semiconductor Quantum Dots and Nanocrystals.- Scanning Tunneling Spectroscopy on III-V Materials: Effects of Dimensionality, Magnetic Field, and Magnetic Impurities.- Magnetization of Interacting Electrons in Low-Dimensional Systems.- Spin Polarized Transport and Spin Relaxation in Quantum Wires.- InAs Spin Filters Based on the Spin-Hall Effect.- Spin Injection and Detection in Spin Valves with Integrated Tunnel Barriers.- Growth and Characterization of Ferromagnetic Alloys for Spin Injection.- Charge and Spin Noise in Magnetic Tunnel Junctions.- Nanostructured Ferromagnetic Systems for the Fabrication of Short-Period Magnetic Superlattices.- How X-Ray Methods Probe Chemically Prepared Nanoparticles from the Atomic- to the Nano-Scale.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

Page Top