Geometry, counting of points and local harmonic analysis

書誌事項

Geometry, counting of points and local harmonic analysis

Gérard Laumon

(Cambridge studies in advanced mathematics, 41 . Cohomology of Drinfeld modular varieties ; pt. 1)

Cambridge University Press, 2010

  • : pbk

この図書・雑誌をさがす
注記

Originally published: 1996

"First paperback edition 2010"--T.p. verso

Includes bibliographical references (p. [337]-340) and index

内容説明・目次

内容説明

Originally published in 1995, Cohomology of Drinfeld Modular Varieties aimed to provide an introduction, in two volumes, both to this subject and to the Langlands correspondence for function fields. These varieties are the analogues for function fields of the Shimura varieties over number fields. The Langlands correspondence is a conjectured link between automorphic forms and Galois representations over a global field. By analogy with the number-theoretic case, one expects to establish the conjecture for function fields by studying the cohomology of Drinfeld modular varieties, which has been done by Drinfeld himself for the rank two case. The present volume is devoted to the geometry of these varieties, and to the local harmonic analysis needed to compute their cohomology. Though the author considers only the simpler case of function rather than number fields, many important features of the number field case can be illustrated.

目次

  • 1. Construction of Drinfeld modular varieties
  • 2. Drinfeld A-modules
  • 3. The Lefschetz numbers of Hecke operators
  • 4. The fundamental lemma
  • 5. Very cuspidal Euler-Poincare functions
  • 6. The Lefschetz numbers as sums of global elliptic orbital integrals
  • 7. Unramified principal series representations
  • 8. Euler-Poincare functions as pseudocoefficients of the Steinberg relation
  • Appendices.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示
詳細情報
ページトップへ