Principles of highway engineering and traffic analysis
著者
書誌事項
Principles of highway engineering and traffic analysis
John Wiley, c2009
4th ed
大学図書館所蔵 全3件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
There is more demand than ever for highway engineers due to new highway projects throughout the country. This new fourth edition provides interested engineers with the information needed to solve the highway-related problems that are most likely to be encountered in the field. It includes updated coverage on intersection sight distance, basics of signal timing, and interchange design. New sample FE exam questions are also presented throughout the chapters. Engineers will not only learn the important principles but they'll also be better prepared for the civil engineering exams.
目次
Chapter 1: Introduction to Highway Engineering and Traffic Analysis. 1.1 Introduction. 1.2 Highways and the Economy. 1.2.1 The Highway Economy. 1.2.2 Supply Chains. 1.2.3 Economic Development. 1.3 Highways, Energy and the Environment. 1.4 Highways and the Transportation System. 1.5 Highway Transportation and the Human Element. 1.5.1 Passenger Transportation Modes and Traffic Congestion.1.5.2 Highway Safety.1.5.3 Demographic Trends.1.6 Highways and Evolving Technologies.1.6.1 Infrastructure Technologies.1.6.2 Vehicle Technologies. 1.6.3 Traffic Control Technologies.1.7 Scope of Study. Chapter 2: Road Vehicle Performance. 2.1 Introduction. 2.2 Tractive Effort and Resistance. 2.3 Aerodynamic Resistance. 2.4 Rolling Resistance. 2.5 Grade Resistance. 2.6 Available Tractive Effort. 2.6.1 Maximum Tractive Effort. 2.6.2 Engine-Generated Tractive Effort. 2.7 Vehicle Acceleration. 2.8 Fuel Efficiency. 2.9 Principles of Braking. 2.9.1 Braking Forces. 2.9.2 Braking Force Ratio and Efficiency. 2.9.3 Antilock Braking Systems. 2.9.4 Theoretical Stopping Distance. 2.9.5 Practical Stopping Distance. 2.9.6 Distance Traveled During Driver Perception/Reaction. Chapter 3: Geometric Design of Highways. 3.1 Introduction. 3.2 Principles of Highway Alignment. 3.3 Vertical Alignment. 3.3.1 Vertical Curve Fundamentals. 3.3.2 Stopping Sight Distance. 3.3.3 Stopping Sight Distance and Crest Vertical Curve Design. 3.3.4 Stopping Sight Distance and Sag Vertical Curve Design. 3.3.5 Passing Sight Distance and Crest Vertical Curve Design. 3.3.6 Underpass Sight Distance and Sag Vertical Curve Design. 3.4 Horizontal Alignment. 3.4.1 Vehicle Cornering. 3.4.2 Horizontal Curve Fundamentals. 3.4.3 Stopping Sight Distance and Horizontal Curve Design. 3.5 Combined Vertical and Horizontal Alignment. Chapter 4: Pavement Design. 4.1 Introduction. 4.2 Pavement Types. 4.2.1 Flexible Pavements. 4.2.2 Rigid Pavements 95. 4.3 Pavement System Design: Principles for Flexible Pavements. 4.3.1 Calculation of Flexible Pavement Stresses and Deflections. 4.4 The AASHTO Flexible-Pavement Design Procedure. 4.4.1 Serviceability Concept. 4.4.2 Flexible-Pavement Design Equation. 4.4.3 Structural Number. 4.5 Pavement System Design: Principles for Rigid Pavements. 4.5.1 Calculation of Rigid-Pavement Stresses and Deflections. 4.6 The AASHTO Rigid-Pavement Design Procedure. 4.7 Measuring Pavement Quality and Performance. 4.7.1 International Roughness Index. 4.7.2 Friction Measurements. 4.7.3 Rut Depth. Chapter 5: Fundamentals of Traffic Flow and Queuing Theory. 5.1 Introduction. 5.2 Traffic Stream Parameters. 5.2.1 Traffic Flow, Speed, and Density. 5.3 Basic Traffic Stream Models. 5.3.1 Speed-Density Model. 5.3.2 Flow-Density Model. 5.3.3 Speed-Flow Model. 5.4 Models Of Traffic Flow. 5.4.1 Poisson Model. 5.4.2 Limitations of the Poisson Model. 5.5 Queuing Theory and Traffic Flow Analysis. 5.5.1 Dimensions of Queuing Models. 5.5.2 D/D/1 Queuing. 5.5.3 M/D/1 Queuing. 5.5.4 M/M/1 Queuing. 5.5.5 M/M/N Queuing. 5.6 Traffic Analysis at Highway Bottlenecks. Chapter 6: Highway Capacity and Level-of-Service Analysis. 6.1 Introduction. 6.2 Level-of-Service Concept. 6.3 Level-of-Service Determination. 6.3.1 Base Conditions and Capacity. 6.3.2 Determine Free-Flow Speed. 6.3.3 Determine Analysis Flow Rate. 6.3.4 Calculate Service Measure(s) and Determine LOS. 6.4 Basic Freeway Segments. 6.4.1 Base Conditions and Capacity. 6.4.2 Service Measure. 6.4.3 Determining Free-Flow Speed. 6.4.4 Determining Analysis Flow Rate. 6.4.5 Calculating Density and Determining LOS. 6.5 Multilane Highways. 6.5.1 Base Conditions and Capacity. 6.5.2 Service Measure. 6.5.3 Determining Free-Flow Speed. 6.5.4 Determining Analysis Flow Rate. 6.5.5 Calculating Density and Determining LOS. 6.6 Two-Lane Highways. 6.6.1 Base Conditions and Capacity. 6.6.2 Service Measures. 6.6.3 Determining Free-Flow Speed. 6.6.4 Determining Analysis Flow Rate. 6.6.5 Calculate Service Measures. 6.6.6 Determine LOS. 6.7 Design Traffic Volumes. Chapter 7: Traffic Control and Analysis at Signalized Intersections. 7.1 Introduction. 7.2 Intersection and Signal Control Characteristics. 7.2.1 Actuated Control. 7.2.2 Vehicle Detection. 7.2.3 Typical Phase Operation. 7.2.4 Signal Controller Operation. 7.3 Analysis of Traffic at Signalized Intersections. 7.3.1 Concepts and Definitions. 7.3.2 Signalized Intersection Analysis with D/D/1 Queuing. 7.3.3 Signalized Intersection Analysis for Level of Service. 7.4 Optimal Traffic Signal Timing. 7.5 Development of a Traffic Signal Phasing and Timing Plan. 7.5.1 Select Signal Phasing. 7.5.2 Establish Analysis Lane Groups. 7.5.3 Calculate Analysis Flow Rates and Adjusted Saturation Flow Rates. 7.5.4 Determine Critical Lane Groups and Total Cycle Lost Time. 7.5.5 Calculate Cycle Length. 7.5.6 Allocate Green Time. 7.5.7 Calculate Change and Clearance Intervals. 7.5.8 Check Pedestrian Crossing Time. 7.6 Level-of-Service Determination. 7.7 Signal Coordination. 7.7.1 Fundamental Relationships. 7.7.2 Effective Green to Cycle Length Ratio (g/C). 7.7.3 Platoon Dispersion. 7.7.4 State of the Practice. 7.7.5 Progression Quality and Level of Service Analysis. 7.8 The Progression Adjustment Factor and Arrival Type. Chapter 8: Travel Demand and Traffic Forecasting. 8.1 Introduction. 8.2 Traveler Decisions. 8.3 Scope of the Travel Demand and Traffic Forecasting Problem. 8.4 Trip Generation. 8.4.1 Typical Trip Generation Models. 8.4.2 Trip Generation with Count Data Models. 8.5 Mode and Destination Choice. 8.5.1 Methodological Approach. 8.5.2 Logit Model Applications. 8.6 Highway Route Choice. 8.6.1 Highway Performance Functions. 8.6.2 User Equilibrium. 8.6.3 Mathematical Programming Approach to User Equilibrium. 8.6.4 System Optimization. 8.7 Traffic Forecasting in Practice. 8.8 The Traditional Four-Step Process. 8.9 The Current State of Travel Demand and Traffic Forecasting. Appendix 8A: Least Squares Estimation. Appendix 8B: Maximum-Likelihood Estimation. Appendix A: Metric Example Problems. Appendix B: Metric End-of-Chapter Problems. Index.
「Nielsen BookData」 より