Semi-rigid connections handbook

著者

書誌事項

Semi-rigid connections handbook

edited by Wai-Fah Chen, Norimitsu Kishi, and Masato Komuro

(Civil and environmental engineering series)

J. Ross Pub., 2011

  • : hardcover

大学図書館所蔵 件 / 2

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

Research on the topic of steel frames with semi-rigid connections (Partially Restrained (PR) construction or PR connection) has been conducted over the past 10 years. Despite significant research and development efforts, usage of PR principles has nevertheless been very slow in coming to the profession caused in part by the lack of easy access to reliable test data on these connections and also due to the lack of software for practical implementation. With the publication of the 2005 AISC specifications as well as Eurocode 3, practical implementation of the use of PR connections in structural systems is now a real possibility. This Handbook presents a simple and comprehensive introduction that will help design practitioners implement these new developments into engineering practice. Beginning with a discussion of the new specifications and classifications of these connections, the authors go on to show, on the basis of the collected connections database, practical mathematical models for computer implementation, and provide case studies on these frames including composite construction. With the help of the user-friendly list of collected data in tabular form with illustrative figures, information on semi-rigid connections is now available in a single publication and may ultimately result in its wide-spread usage among practitioners.

目次

Preface -W. F. Chen, University of Hawaii, USAAbout the EditorsSection I. Specifications and Classifications - Y. Goto, Nagoya Institute of Techology, Japan1. Classification and AISC Specification1.1. Classification of connections1.1.1. General1.1.2. EC3 classification system (CEN 2005) 1.1.3. AISC classification system (AISC 2005) 1.1.4. Bjorhovde et al. classification system (Bjorhovde et al. 1990) 1.1.5. Nethercot et al. classification system (Nethercot et al. 1998) 1.1.6. Goto et al. classification system (Goto et al.1998) 1.1.7. Comparison of existing classification systems1.2. AISC Specification1.2.1. Introduction1.2.2. Connection classification1.2.3. Structural analysis and design for frames with PR connectionsReferencesSection II. Effects of Semi-Rigid Connections on Structural Members and Frames - Eric M. Lui and Zhiling Zhang, Syracuse University, USA2. Effects of Semi-Rigid Connections on Structural Members and Frames2.1. Introduction2.1.1. Connection Behavior2.1.1.1. Connection Stiffness2.1.1.2. Connection Strength2.1.1.3. Connection Rotational Ductility2.2. Effects of Semi-Rigid Connections on Columns2.2.1. Column Effective Length Factor2.2.2. K Factor for Columns in Semi-Rigid Frames2.2.2.1. Sway Prevented Frames2.2.2.2. Sway Permitted Frames2.2.2.3. Procedure for Evaluating K using the Modified Moment of Inertia Approach2.2.2.4. Other Approaches for K Factor Computation2.2.2.5. Column Strength Design Equations2.3. Effects of Semi-Rigid Connections on Beams2.3.1 Lateral Torsional Buckling Load for Compact Beams2.3.1.1 Beam Strength Design Equations2.3.2 Beams with Semi-Rigid Connections2.3.2.1 Analysis of Semi-Rigid Beams2.3.2.2 Design of Semi-Rigid Beams2.4. Effects of Semi-Rigid Connections on Frames2.4.1. Analysis of Semi-Rigid Frames2.4.1.1. Elastic Bifurcation Analysis of Semi-Rigid Frames2.4.1.1.1. Beam Stiffness Relationship2.4.1.1.2. Column Stiffness Relationship2.4.1.2. Load Deflection Analysis of Semi-Rigid Frames2.4.1.3. Allowance for the Formation of Plastic or Connection Hinges2.4.2. Design of Semi-Rigid Frames2.4.2.1. Design of Sway Prevented Semi-Rigid Frames2.4.2.1.1. Design of Beams2.4.2.1.2. Design of Columns2.4.2.2. Design of Sway Permitted Semi-Rigid Frames2.4.2.2.1. Design of Beams2.4.2.2.2. Design of Columns2.4.3 Drift of Semi-Rigid Frames2.5. Summary and ConclusionsReferencesSection III. Steel Connection Database and Modeling - N. Kishi and M. Komuro, Muroran Institute of Technology, Japan3. Types of PR connections3.1 Single Web-Angle Connections/Single Plate Connections3.2 Double Web-Angle Connections3.3 Top- and Seat-Angle Connections with Double Web-Angle3.4 Top- and Seat-Angle Connections3.5 Extended End-Plate Connections/Flush End-Plate Connections3.6 Header Plate ConnectionsReferences4. Modeling of Connections4.1. General Remarks4.2. Classification of connection models4.2.1. Analytical models4.2.2. Mathematical models4.2.3. Mixed models4.3. Behavior under monotonic loading4.3.1. Linear model4.3.2 Polynomial model4.3.3. Exponential Model4.3.4. Power model4.3.5. Bounding line model4.3.6. Ramberg-Osgood model4.3.7. Richard-Abbott model4.4. Behavior under cyclic loading4.4.1. Independent hardening model4.4.2. Kinematic hardening model4.4.3. Bounding surface model with internal variablesReferences5. Steel Connection Database5.1. General remarks5.2. Parameter Definition for Connection Type5.2.1. Single Web-Angle Connections/Single Plate Connections5.2.2. Double Web-Angle Connections5.2.3. Top- and Seat-Angle Connections with Double Web-Angle5.2.4. Top- and Seat-Angle Connections5.2.5. Extended End-Plate Connections5.2.6. Flush End-Plate Connections5.2.7. Header Plate Connections5.3. Steel Connection Data Bank Program5.3.1. Outline of SCDB5.3.2. Use's manual for program SCDB5.3.3. Examples5.4. Web-site of connectionsReferencesSection IV. Steel-Concrete Composite Connections - Hong Chen, Offshore Tech. Development Pte Ltd, Singapore and J. Y. R Liew, National University of Singapore6. Advanced Analysis of Steel and Composite Semi-Rigid Frames6.1. Structural Frames6.1.1. Rigid Frames6.1.2. Simple Frames6.1.3 Bracing Systems6.1.4 Braced Versus Unbraced Frames6.1.5. Sway versus Non-Sway Frames6.1.6. Beam-to-Column Connections6.1.6.1. Connection Classification6.1.7. Analysis and Design of Semi-Rigid Frames6.1.8. Frame Stability6.1.8.1. Imperfection Effects6.1.8.2. Limit States Design6.1.8.3. Second-Order Analysis6.1.8.4. Direct Analysis Approach6.2. Advanced Analysis of Steel Frames6.2.1. Development of Advanced Analysis6.2.1.1. Assessment Approaches for Strength and Stability6.2.1.2. Direct Analysis of Frame's Stability and Strength6.2.1.3. Application to Tubular Structures6.2.2. Stiffness Formulation of Beam-Column6.2.2.1. Available Stiffness Formulations6.2.2.2. Virtual Work Equation6.2.2.3 Stability Interpolation Functions6.2.2.4. Elastic and Geometric Stiffness Matrices6.2.2.5. Beam-Column Approach and Member Bowing Effect6.2.2.6. Stability and Bowing Functions6.2.2.7. Tangent Stiffness Matrix6.2.3. Modeling of Material Nonlinearity in Beam-Column6.2.3.1. Methods for Modeling Material Nonlinearity6.2.3.2. Plastic Strength Surface6.2.3.3. Concentrated Plastic Hinge Formulation6.2.3.4. Two-Surface Plastic Hinge Formulation6.2.3.5. Numerical Strategies for Plastic Hinge Analysis6.2.3.6. Plasticity Formulation at Elevated Temperature6.2.3.7. Modeling of Lateral-Torsion Buckling6.2.3.8. Modeling of Local Buckling6.2.4. Updating of Element Forces and Geometry in Beam-Column6.2.4.1. Force Recovery based on the Natural Deformation Approach6.2.4.2. Geometry Updating and Web Plane Vector6.2.5. Modeling of Truss Element6.2.6. Modeling of Semi-Rigid Connections6.2.6.1. Connections in Building Frame6.2.6.2. Tubular Joints6.2.7. Numerical Examples6.2.7.1. Tubular Frame with K-Type Joints6.2.7.2. Bowstring Column6.2.7.3. Bowstring Frame6.2.7.4. Fire Analysis of Semi-rigid Frames6.3. Advanced Analysis of Composite Frames6.3.1. Composite Members - Advanced Analysis6.3.2. Modeling of Composite Column6.3.3. Modeling of Composite Beam6.3.4. Modeling of Building Core Wall6.3.5. Modeling of Composite Semi-Rigid End Plate Connection6.3.5.1. Moment Resistance6.3.5.1.1. Negative Moment Capacity6.3.5.1.2. Determination of Potential Bolt Forces Pri6.3.5.1.3. Positive Moment Capacity6.3.5.1.4. Panel Zone Shear Resistance6.3.5.2. Rotational Stiffness6.3.5.2.1. Rotational Stiffness under Negative Moment6.3.5.2.2. Rotational Stiffness under Positive Moment6.3.5.3. Comparison with Test Results6.3.6. Analysis of 20-Story Steel Frame with Composite Beams6.3.7. Analysis of Core-Braced Multi-Story FrameAppendix 1 Elastic stiffness matrix, keAppendix 2 Geometric stiffness matrix, kgAppendix 3 Bowing matrix, kbSection V. Case Study - Y. P. Liu, and S. L. Chan, The Hong Kong Polytechnic University, Hong Kong and Dennis Lam, University of Leeds, U.K. 7. Case Studies for Second-Order (Direct) Analysis of Semi-Rigid Frames in Hong Kong7.1. Introduction7.2. Second-order integrated design and analysis7.2.1. P-A and P-a effects7.2.2. Initial imperfections7.2.2.1. Member imperfections7.2.2.2. Frame imperfections7.3. Modeling of semi-rigid jointed members7.4. Examples7.4.1. Example 1 The hemispherical dome at roof of a building7.4.1.1. Structure description7.4.1.2. Load Path7.4.1.3. Computer Method of Analysis7.4.1.4. Design Code7.4.1.4.1. Material Properties7.4.1.4.2. Section assignment and connections7.4.1.4.3. Load Combination7.4.1.5. Boundary conditions7.4.1.6. Connection stiffness7.4.1.7. Imperfections7.4.1.7.1. Member imperfections7.4.1.7.2. Frame imperfections7.4.1.8. Additional vibration frequency7.4.1.9. Load carrying capacity7.4.2. Example 2 The shallow roof at the top of a building7.4.2.1. Structure description7.4.2.2. Load Path7.4.2.3. Computer Method of Analysis7.4.2.4. Design Code7.4.2.4.1. Material Properties7.4.2.4.2. Section assignment and connections7.4.2.4.3. Load Combination7.4.2.5. Boundary conditions7.4.2.6. Connection stiffness7.4.2.7. Imperfections7.4.2.7.1. Member imperfections7.4.2.7.2. Frame imperfections7.4.2.8. Additional vibration frequency7.4.2.9. Load carrying capacity7.5. ConclusionsReferencesAppendix. Experimental data of SCDBA-1 Single web angle / Single plate connectionsA-2 Double web angle connectionsA-3 Top- and seat-angle with double web-angle connectionsA-4 Top- and seat-angle connectionsA-5 Extended end-plate connectionsA-6 Flush end-plate connectionsA-7 Header end-plate connectionsIndex

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ