Multi-armed bandit allocation indices
著者
書誌事項
Multi-armed bandit allocation indices
Wiley, 2011
2nd ed
大学図書館所蔵 全7件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
In 1989 the first edition of this book set out Gittins' pioneering index solution to the multi-armed bandit problem and his subsequent investigation of a wide of sequential resource allocation and stochastic scheduling problems. Since then there has been a remarkable flowering of new insights, generalizations and applications, to which Glazebrook and Weber have made major contributions. This second edition brings the story up to date. There are new chapters on the achievable region approach to stochastic optimization problems, the construction of performance bounds for suboptimal policies, Whittle's restless bandits, and the use of Lagrangian relaxation in the construction and evaluation of index policies. Some of the many varied proofs of the index theorem are discussed along with the insights that they provide. Many contemporary applications are surveyed, and over 150 new references are included.
Over the past 40 years the Gittins index has helped theoreticians and practitioners to address a huge variety of problems within chemometrics, economics, engineering, numerical analysis, operational research, probability, statistics and website design. This new edition will be an important resource for others wishing to use this approach.
目次
Foreword. Foreword to the first edition.
Preface.
Preface to the first edition.
1 Introduction or Exploration.
Exercises.
2 Main Ideas: Gittins Index.
2.1 Introduction.
2.2 Decision processes.
2.3 Simple families of alternative bandit processes.
2.4 Dynamic programming.
2.5 Gittins index theorem.
2.6 Gittins index.
2.7 Proof of the index theorem by interchanging bandit portions.
2.8 Continuous-time bandit processes.
2.9 Proof of the index theorem by induction and interchange argument.
2.10 Calculation of Gittins indices.
2.11 Monotonicity conditions.
2.12 History of the index theorem.
2.13 Some decision process theory.
Exercises.
3 Necessary Assumptions for Indices.
3.1 Introduction.
3.2 Jobs.
3.3 Continuous-time jobs.
3.4 Necessary assumptions.
3.5 Beyond the necessary assumptions.
Exercises.
4 Superprocesses, Precedence Constraints and Arrivals.
4.1 Introduction.
4.2 Bandit superprocesses.
4.3 The index theorem for superprocesses.
4.4 Stoppable bandit processes.
4.5 Proof of the index theorem by freezing and promotion rules.
4.6 The index theorem for jobs with precedence constraints.
4.7 Precedence constraints forming an out-forest.
4.8 Bandit processes with arrivals.
4.9 Tax problems.
4.10 Near optimality of nearly index policies.
Exercises.
5 The Achievable Region Methodology.
5.1 Introduction.
5.2 A simple example.
5.3 Proof of the index theorem by greedy algorithm.
5.4 Generalized conservation laws and indexable systems.
5.5 Performance bounds for policies for branching bandits.
5.6 Job selection and scheduling problems.
5.7 Multi-armed bandits on parallel machines.
Exercises.
6 Restless Bandits and Lagrangian Relaxation.
6.1 Introduction.
6.2 Restless bandits.
6.3 Whittle indices for restless bandits.
6.4 Asymptotic optimality.
6.5 Monotone policies and simple proofs of indexability.
6.6 Applications to multi-class queuing systems.
6.7 Performance bounds for the Whittle index policy.
6.8 Indices for more general resource configurations.
Exercises.
7 Multi-Population Random Sampling (Theory).
7.1 Introduction.
7.2 Jobs and targets.
7.3 Use of monotonicity properties.
7.4 General methods of calculation: use of invariance properties.
7.5 Random sampling times.
7.6 Brownian reward processes.
7.7 Asymptotically normal reward processes.
7.8 Diffusion bandits.
Exercises.
8 Multi-Population Random Sampling (Calculations).
8.1 Introduction.
8.2 Normal reward processes (known variance).
8.3 Normal reward processes (mean and variance both unknown).
8.4 Bernoulli reward processes.
8.5 Exponential reward processes.
8.6 Exponential target process.
8.7 Bernoulli/exponential target process.
Exercises.
9 Further Exploitation.
9.1 Introduction.
9.2 Website morphing.
9.3 Economics.
9.4 Value of information.
9.5 More on job-scheduling problems.
9.6 Military applications.
References.
Tables.
Index.
「Nielsen BookData」 より