Statistical learning for biomedical data
著者
書誌事項
Statistical learning for biomedical data
(Practical guides to biostatistics and epidemiology)
Cambridge University Press, 2011
- : hardcover
- : pbk
大学図書館所蔵 全5件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 271-280) and index
内容説明・目次
内容説明
This book is for anyone who has biomedical data and needs to identify variables that predict an outcome, for two-group outcomes such as tumor/not-tumor, survival/death, or response from treatment. Statistical learning machines are ideally suited to these types of prediction problems, especially if the variables being studied may not meet the assumptions of traditional techniques. Learning machines come from the world of probability and computer science but are not yet widely used in biomedical research. This introduction brings learning machine techniques to the biomedical world in an accessible way, explaining the underlying principles in nontechnical language and using extensive examples and figures. The authors connect these new methods to familiar techniques by showing how to use the learning machine models to generate smaller, more easily interpretable traditional models. Coverage includes single decision trees, multiple-tree techniques such as Random Forests (TM), neural nets, support vector machines, nearest neighbors and boosting.
目次
- Preface
- Acknowledgements
- Part I. Introduction: 1. Prologue
- 2. The landscape of learning machines
- 3. A mangle of machines
- 4. Three examples and several machines
- Part II. A Machine Toolkit: 5. Logistic regression
- 6. A single decision tree
- 7. Random forests - trees everywhere
- Part III. Analysis Fundamentals: 8. Merely two variables
- 9. More than two variables
- 10. Resampling methods
- 11. Error analysis and model validation
- Part IV. Machine Strategies: 12. Ensemble methods - let's take a vote
- 13. Summary and conclusions
- References
- Index.
「Nielsen BookData」 より